	Math 30	
Date:	Derivative Gateway Test	Name:

5. $h(t) = (t^2 - 6t)^4 - t + \sqrt{2}$

37.
$$F(x) = (2x+1)^{6e}(x^2-5)$$

$$43. \ y = \frac{\sqrt{t}}{t - \pi}$$

64.
$$y = \frac{1}{x^{-5/2} + \sqrt{x}}$$

97.
$$f(t) = (\ln 0.4)(0.4)^t$$

101. $y = x \cos(2x^2 - x - 1)$

130. $s(t) = -\frac{g}{2}t^2 + v_0t$, where g, v_0 are constants

	Math 30	
Date:	Derivative Gateway Test	Name:

19. $y = \frac{(t^2+1)^5}{5} + \pi t$

22. $y = (x^2 - 5) \ln x$

52.
$$f(z) = \frac{z}{e^{2z} + e^z}$$

72.
$$H = (1 - t^3)^{-3} + (t^2 + 1)^{1/3}$$

82.
$$y = e^{-x^2}$$

110. $y = x^2 \sqrt{1 - x^4}$

138.
$$h(r) = 2\pi r^2 + \frac{80}{r}$$

	Math 30	
Date:	Derivative Gateway Test	Name:

11. $H = \left(\frac{s^2}{2} + 4\right)^3 - 2s$

24. $G = (\cos 2\phi)(\ln \frac{1}{2}\phi)$

$$48. \ A = \frac{s^2 - s}{4s^3 - 2s + 1}$$

79.
$$y = \sqrt[4]{t} - \frac{1}{t^3 - 1}$$

93. $f(t) = 0.004e^{-0.0032t}$

110. $y = x^2 \sqrt{1 - x^4}$

138. $h(r) = 2\pi r^2 + \frac{80}{r}$

	Math 30	
Date:	Derivative Gateway Test	Name:

19. $y = \frac{(t^2+1)^5}{5} + \pi t$

31.
$$f(x) = \sqrt{x+1} \tan(\pi x)$$

57.
$$f(x) = \frac{\ln x + \ln 5}{x^5 + \pi}$$

67.
$$h(t) = \sqrt{e^{3t} + 4}$$

81. $y = ex + e^x$

108. $y = x^4 \ln(4.7x)$

121. $y = (ax)^2 + bx + c$, where a, b, c are constants

	Math 30	
Date:	Derivative Gateway Test	Name:

15. $f(x) = \frac{1}{2}(x^3 + 3x + \pi)^2$

32. $f(s) = (s-1)\ln(s^2+1)$

47.
$$V = \frac{6^r}{2r+1}$$

70.
$$g(\theta) = 2\theta + \frac{\sin\theta}{\theta}$$

95.
$$f(t) = 1 + \frac{e^{2t}}{2}$$

115.
$$f(x) = \sqrt{\ln x} + ex^2$$

130. $s(t) = -\frac{g}{2}t^2 + v_0t$, where g, v_0 are constants

Math 30 Date: ______ Derivative Gateway Test Name: ______

Find the derivative of each of the following functions. Do not simplify your answers. Be careful when writing answers, since all errors count, including missing parentheses! No notes or calculators allowed. Time Limit: 20 minutes.

18. $y = (t^3 - 3t^2 + 4t - 2)^6 - 2\ln 2$

39. $H(x) = e^{-2x} \sin(x + \pi)$

52. $f(z) = \frac{z}{e^{2z} + e^z}$

72.
$$H = (1 - t^3)^{-3} + (t^2 + 1)^{1/3}$$

87.
$$y = \frac{1}{2}(e^x - e^{-x})$$

116. $F(s) = \ln(\cos(2s) + 2)$

138. $h(r) = 2\pi r^2 + \frac{80}{r}$

Math 30 Date: ______ Derivative Gateway Test Name: ______

Find the derivative of each of the following functions. Do not simplify your answers. Be careful when writing answers, since all errors count, including missing parentheses! No notes or calculators allowed. Time Limit: 20 minutes.

13. $f(x) = (x \ln 3)^3 - 5x^2 - x$

38. $g(x) = \sqrt{x} \ln(x-3)$

50.
$$y = \frac{e^{2x}}{1 - e^{-x/2}}$$

70.
$$g(\theta) = 2\theta + \frac{\sin\theta}{\theta}$$

83.
$$y = 2^x + 3^2$$

112.
$$f(x) = \left(\frac{2}{\sin x}\right)^3$$

139. $h(r) = 2r^8\sqrt{1-r^2}$

	Math 30	
Date:	Derivative Gateway Test	Name:

15. $f(x) = \frac{1}{2}(x^3 + 3x + \pi)^2$

26. $y = (x^2 - 3x)\cos(2x + 1)$

52.
$$f(z) = \frac{z}{e^{2z} + e^z}$$

70.
$$g(\theta) = 2\theta + \frac{\sin\theta}{\theta}$$

91. $f(t) = 5^{\sin t}$

103. $y = \frac{\ln(x+3)}{x^2}$

131. $g(y) = \cos(\ln y)$

	Math 30	
Date:	Derivative Gateway Test	Name:

10. $B(\theta) = \sqrt{\frac{2\theta^3 - \theta - \pi}{2}} - \theta$

34.
$$f(\theta) = (\cos \theta)(\sin \frac{2}{\pi}\theta)$$

50.
$$y = \frac{e^{2x}}{1 - e^{-x/2}}$$

78. $y = t(t^3 - 4)^{1/4}$

92.
$$f(t) = 24(1.04)^t$$

110. $y = x^2 \sqrt{1 - x^4}$

122. $y = xe^{bx}$, where b is a constant

	Math 30	
Date:	Derivative Gateway Test	Name:

15. $f(x) = \frac{1}{2}(x^3 + 3x + \pi)^2$

21. $y = e^t \sin(\pi t - 1)$

45.
$$y = \frac{x^2}{\ln x}$$

$$76. \ f(x) = \ln\left(e^x + \frac{1}{x}\right)$$

90. $y = 4e^{3x+1}$

110. $y = x^2 \sqrt{1 - x^4}$

133. $g(y) = \pi \cos(2\pi y)$