Sample Exam 1 Math 31, Spring 2010

1. (24 points) Compute the following. No explanation necessary, but show all your work. Please do not simplify any numerical answers.

(a)
$$\int (7x - 9)^{317} dx$$

(b) $\int \frac{x^3}{\sqrt{2x^4 + 7}} dx$
(c) $\int_0^1 \frac{e^{2x}}{e^{2x} + 7} dx$
(d) Let $g(x) = \int_{-3}^x t^2 e^{t^2} dt$. Calculate $g'(x)$.

2. (10 points) Find the area of the region enclosed by the curves y = 12x, $y = x^3 - 4x$, x = 1, and x = 3. No explanation necessary, but show all your work, and do not simplify your final numerical answer.

3. (12 points) Mooninite Iggy is moving back and forth along the x axis at a velocity of $v(t) = \cos(3t+7)$ units per second. If at time t = 0, he is 5 units to the right of the origin (i.e., he is at position r(0) = 5), what is his position at time t = 4? Show all your work, and do not simplify your final numerical answer.

4. (16 points) Consider the solid obtained by rotating the region bounded by the curves x = -2, x = 3, $y = x^2 + 1$, and y = 0 around the x-axis.

- (a) Sketch the region, the solid, and a typical disk or washer.
- (b) Find the volume of the solid.

No explanation necessary, but show all your work, and please do not simplify your final numerical answer.

5. (18 points) Let f(x) be a **DECREASING** function described by the following table.

x	2.0	2.2	2.4	2.6	2.8	3.0	3.2
f(x)	4.9	4.7	4.4	3.7	3.6	3.3	3.1

(a) Use three rectangles to compute the R_3 estimate (sample points are right endpoints) of the integral $\int_2^{3.2} f(x) dx$. No explanation necessary, but show all your work.

(b) Is your answer in part (a) greater than the actual value of $\int_{2}^{3.2} f(x) dx$, or less than the actual value of $\int_{2}^{3.2} f(x) dx$? Briefly **explain** your answer, using the graph of f(x). (In particular, sketch the graph of f(x).)

(c) Use three rectangles to compute the midpoint estimate of the integral $\int_{2}^{3.2} f(x) dx$. No explanation necessary, but show all your work.

6. (20 points) Below is the graph of a function f(t) (not drawn to vertical scale). Each region between the graph of f(t) and the *t*-axis is labelled with a large boldface number that gives the area of that region.

Let
$$g(x) = \int_0^x f(t) dt$$
.

- (a) At which value(s) of x, 0 < x < 7, does g(x) have a local maximum? Justify your answer in **ONE** sentence.
- (b) What is the **maximum** value that g(x) takes for $0 \le x \le 7$ (i.e., what is the maximum possible y = g(x) for $0 \le x \le 7$), and at what value(s) of x is this maximum value attained? Briefly **justify** your answer.