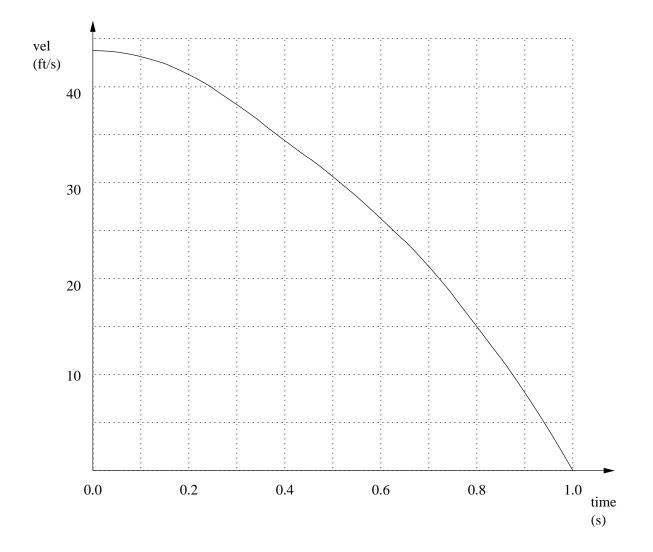

A car is being tested for braking distance. Before the test starts, it is travelling at 30 mph (44 ft/sec), and then at time t = 0.0 sec, the brakes are applied. The following data is then collected from the speedometer of the car.

		0.1									
v(t) (ft/sec)	44	43	41	38	34	30	26	21	15	8	0


The eventual goal here is to find a good approximation of the total distance the car travels between t = 0.0 and t = 1.0 (the braking distance). Assume that the speed of the car is always decreasing.

- 1. If you assume that the car travels at the speed v(0) (i.e., at its initial speed) from t = 0.0 to t = 0.2, how far does the car travel in that time?
- 2. On the graph on page 2, draw a rectangle whose area is the answer to part 1.
- 3. If you assume the car travels at the speed v(0) from t = 0.0 to t = 0.1, how far does the car travel in that time?
- 4. On the graph on page 3, draw a rectangle whose area is the answer to part 3.
- 5. What is the car's highest speed between t = 0.0 and t = 0.2, and at what time is this achieved?
- 6. What is the car's lowest speed between t = 0.0 and t = 0.2, and at what time is this achieved?
- 7. Using your answers to 1, 5, and 6, give upper and lower bounds for how far the car travels between t = 0.0 and t = 0.2.
- 8. Repeat 7 in the intervals $0.2 \le t \le 0.4$, $0.4 \le t \le 0.6$, $0.6 \le t \le 0.8$, $0.8 \le t \le 1.0$.
- 9. Using your answers to 7 and 8, give upper and lower bounds for the distance the car travels between t = 0.0 and t = 1.0. (Also, see graph on page 2.)
- 10. Repeat 7–9, but use the intervals $0.0 \le t \le 0.1$, $0.1 \le t \le 0.2$, etc. How does the difference between your upper and lower bounds here compare to the difference between your upper and lower bounds in 9? (Also, see graph on page 3.)
- 11. If the data were available, and you used the intervals $0.0 \le t \le 0.05$, $0.05 \le t \le 0.10$, and so on, to estimate the braking distance, what would the difference between the upper and lower bounds be?
- 12. Again, if the data were available, what do you think would happen if you considered even smaller intervals? If Δt is the interval size, and there are *n* intervals between 0.0 and 1.0, can you write out a formula for the upper estimate? For the lower estimate? What do you think happens as $n \to \infty$, making $\Delta t \to 0$?

Illustrate your answer to 9 on the graph below.

Illustrate 10 on the graph below.

