Class prep quiz on section 4.9, Stewart's Calculus (8th ed.)

- 1. Which of the following is **not** a correct statement about antiderivatives?
 - (a) One antiderivative of $\cos(2x)$ is $\sin(2x)$.
 - (b) One antiderivative of e^x is e^x .
 - (c) One antiderivative of $\sin x$ is $-\cos x$.
 - (d) One antiderivative of $\frac{1}{x}$ is $\ln |x|$.
- 2. Which of the following is the **most general** antiderivative of $2 \sin x \cos x$?

(a)
$$-\cos^2 x$$
 (b) $-\frac{\cos 2x}{2}$ (c) $\sin^2 x$

(d) None of the above

3. What is the most general antiderivative of $8x^3 - 3x^{-1} + 5\cos x$?

- (a) $2x^4 3\ln|x| + 5\sin x + C$ (b) $2x^4 3\ln|x| 5\sin x + C$
- (c) $2x^4 3 + 5\sin x + C$ (d) $2x^4 3 5\sin x + C$
- 4. What is the function f(x) such that $f''(x) = 7x^3 + e^x$, f(0) = 11, and f'(0) = -3?

(a)
$$f(x) = \frac{7x^5}{20} + e^x$$

(b) $f(x) = \frac{7x^5}{20} + e^x - 4x + 10$
(c) $f(x) = \frac{7x^5}{20} + e^x - 3x + 11$
(d) $f(x) = \frac{7x^5}{20} + e^x + 10$