Class prep quiz on section 3.10, Stewart's Calculus (8th ed.)

- 1. Suppose f(x) is differentiable at x = a. The formula for the linear approximation of f at a is:
 - (a) L(x) = f(a) + (f'(x))(x a) (b) L(x) = (f'(a))(x a)
 - (c) L(x) = f(a) + (f'(a))(x a) (d) L(x) = (f'(x))(x a)
- 2. Which of the following is **NOT** a true statement about either dy or Δy for y = f(x), considered at x = a?
 - (a) $\Delta y = f(a + \Delta x) f(a)$ is the change in f as x changes from x = a to $x = a + \Delta x$.
 - (b) The equation dy = f'(a)dx is another way to write the linear approximation of f at a.
 - (c) dy = f(a + dx) f(a) is the change in f as x changes from x = ato x = a + dx.
 - (d) For small values of dx, $f(a + dx) \approx f(a) + dy$.
- 3. Suppose f(7) = 3 and f'(7) = -4. If you use the linear approximation to f at x = 7 to approximate f(6.95), what value do you get?
 - (a) 2.8 (b) 0.2 (c) 3.2 (d) -0.2
- 4. Suppose f(7) = 3, f'(7) = -4, and f''(x) > 0 for all x. Which of the following statements about the linear approximation L(x) to f at x = 7 is correct?
 - (a) We have $L(x) \ge f(x)$ for x < 7 and $L(x) \ge f(x)$ for x > 7.
 - (b) We have $L(x) \le f(x)$ for x < 7 and $L(x) \ge f(x)$ for x > 7.
 - (c) We always have $L(x) \ge f(x)$.
 - (d) We always have $L(x) \leq f(x)$.