Class prep quiz on section 3.5, Stewart's Calculus (8th ed.)

1. Suppose
$$ye^{xy} = 7$$
. What is $\frac{dy}{dx}$?
(a) $\frac{-y^2 e^{xy}}{e^{xy} + xy e^{xy}}$ (b) $y^2 e^{xy}$
(c) $\frac{dy}{dx}e^{xy} + ye^{xy}\left(x\frac{dy}{dx} + y\right)$ (d) $e^{xy} + ye^{xy}(y+x)$

2. What is the equation of the tangent line to $x^3y - 2y^2x = -12$ at (2, -1)?

(a)
$$\frac{7}{8}$$
 (b) $(y+1) = \frac{2y^2 - 3x^2y}{x^3 - 4yx}(x-2)$

(c)
$$(y+1) = \frac{7}{8}(x-2)$$
 (d) $\frac{2y^2 - 3x^2y}{x^3 - 4yx}$

3. Which of the following statements is true?

- (a) By differentiating both sides of $\sin y = 1$, we can find $\frac{d}{dx}(\sin x)$.
- (b) By differentiating both sides of $\sin y = x$, we can find $\frac{d}{dx}(\sin x)$.
- (c) By differentiating both sides of $\sin y = 1$, we can find $\frac{d}{dx}(\sin^{-1}x)$.
- (d) By differentiating both sides of $\sin y = x$, we can find $\frac{d}{dx}(\sin^{-1}x)$.
- 4. What formula can we obtain by applying implicit differentiation to the equation $e^y = x$?

(a)
$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$
 (b) $\frac{d}{dx}(e^y) = \frac{1}{e^y}$
(c) $\frac{d}{dx}(\ln x) = \frac{1}{e^x}$ (d) $\frac{d}{dx}\left(\frac{1}{e^x}\right) = \frac{1}{e^x}$