Class prep quiz on sections 2.2–2.3, Stewart's Calculus (8th ed.)

1. Suppose we know the following information about a function g(x):

What is the most reasonable conclusion to draw about $\lim_{x \to -1} g(x)$?

(a) $\lim_{x \to -1} g(x) = -1$ (b) $\lim_{x \to -1} g(x) = 0$ (c) $\lim_{x \to -1} g(x) = +1$ (d) $\lim_{x \to -1} g(x)$ does not exist

2. Suppose the graph of y = f(x) looks like:

Which of the following statements seems most likely to be correct?

- (a) $\lim_{x \to 0} f(x)$ does not exist because f(0) = 0.
- (b) $\lim_{x\to 0} f(x)$ does not exist because as $x \to 0$, f(x) does not approach just one y value.
- (c) $\lim_{x\to 0} f(x)$ does not exist because $\lim_{x\to 0^-} f(x)$ and $\lim_{x\to 0^+} f(x)$ both exist, but have different values.
- (d) $\lim_{x \to 0} f(x) = 1.$
- 3. Suppose we know that $\lim_{x\to 7} f(x) = A$ and $\lim_{x\to 7} g(x) = B$. Which of the following values are **not** determined by A and B?
 - (a) $\lim_{x \to 7} f(x)g(x)$
 - (b) $\lim_{x \to 7} f(x) + g(x)$
 - (c) $\lim_{x \to 7} \frac{f(x)}{g(x)}$
 - (d) Trick question: All of these values are determined by A and B.

- 4. Let f(x) be an unspecified polynomial function. What is the best explanation of why we can't evaluate lim_{x→3} f(x) f(3)/(x 3) by substituting x = 3?
 (a) The denominator of f(x) f(3)/(x 3) is 0 at x = 3.
 (b) Trick question: We can evaluate lim_{x→3} f(x) by substituting x = 3.
 - (c) Both the numerator and denominator of $\frac{f(x) f(3)}{x 3}$ are 0 at x = 3.
 - (d) The numerator of $\frac{f(x) f(3)}{x 3}$ is 0 at x = 3.