Math 221A, problem set 04 Due: Wed Sep 29 Last revision due: Tue Nov 23

Supplemental definitions:

semidirect product Let N and H be groups, and let φ be a homomorphism from H to Aut(N), i.e., $\varphi_h : N \to N$ is an automorphism. The *semidirect product* $N \rtimes H$ is defined to be:

- Set: Cartesian product $N \times H$.
- Operation: For $n_1, n_2 \in N$, $h_1, h_2 \in H$, we define

$$(n_1, h_1)(n_2, h_2) = (n_1\varphi_{h_1}(n_2), h_1h_2).$$

Note that if we think of the operation of $N \rtimes H$ as declaring that

$$n_1h_1n_2h_2 = n_1\varphi_{h_1}(n_2)h_1h_2,$$

we see that the operation is really a "move-past" rule whereby we can move h_1 past n_2 at the cost of applying the automorphism φ_{h_1} . Special case: If $\varphi_h = \text{id for all } h \in H$, then $N \rtimes H$ is precisely the direct product $N \times H$.

v perp For $\mathbf{v} \in \mathbf{R}^n$, we define

$$\mathbf{v}^{\perp} = \left\{ x \in \mathbf{R}^n \mid \mathbf{x} \cdot \mathbf{v} = 0 \right\}.$$

In other words, \mathbf{v}^{\perp} is the set of all vectors of \mathbf{R}^n that are orthogonal (so for nonzero \mathbf{v} , perpendicular) to \mathbf{v} in \mathbf{R}^n .

reflection For nonzero $\mathbf{v} \in \mathbf{R}^n$, we define the reflection $r_{\mathbf{v}} : \mathbf{R}^n \to \mathbf{R}^n$ to be the linear transformation

$$r_{\mathbf{v}}(\mathbf{x}) = \mathbf{x} - 2\left(\frac{\mathbf{x} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}.$$

Problems to be turned in: Problem x.y.z of Artin denotes problem y.z in Chapter x.

- 1. Let N and H be group and let φ be a homomorphism from H to Aut(N). Prove that the semidirect product $N \rtimes H$ satisfies the axioms of a group.
- 2. Let **v** be a nonzero vector in \mathbf{R}^n .
 - (a) Prove that the reflection $r_{\mathbf{v}}$ is an orthogonal transformation.
 - (b) Prove that $r_{\mathbf{v}}$ has order 2.
 - (c) Prove that $r_{\mathbf{v}}$ fixes every vector in \mathbf{v}^{\perp} .
 - (d) Prove that if A is the matrix of $r_{\mathbf{v}}$ with respect to some basis, then det A = -1. (Suggestion: det A doesn't depend on the basis you choose, so choose a basis that makes computing A simpler.)

- 3. We know that every element of $O_2(\mathbf{R})$ with determinant -1 has the form $R = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$. Find a unit vector \mathbf{v} such that $r_{\mathbf{v}}$ has matrix R with respect to the standard basis $\{\mathbf{e}_1, \mathbf{e}_2\}$, and prove your answer.
- 4. The goal of this problem is to prove the following theorem.

Reflection Theorem: Every element of $O_n(\mathbf{R})$ is the product of at most *n* reflections, where the product of 0 reflections is the identity.

In particular, $O_n(\mathbf{R})$ is generated by reflections.

- (a) Let \mathbf{x} and \mathbf{y} be distinct nonzero vectors in \mathbf{R}^n such that $|\mathbf{x}| = |\mathbf{y}|$. Prove that there exists some vector $\mathbf{v} \in \mathbf{R}^n$ such that $r_{\mathbf{v}}(\mathbf{x}) = \mathbf{y}$. (Suggestion: Try drawing this in \mathbf{R}^2 .)
- (b) Suppose T is a linear transformation in $O_n(\mathbf{R})$. Prove that there exists some $\mathbf{v} \in \mathbf{R}^n$ such that $(r_{\mathbf{v}} \circ T)(\mathbf{e}_n) = \mathbf{e}_n$, where \mathbf{e}_n is the *n*th standard basis vector, and prove that the matrix of $r_{\mathbf{v}} \circ T$ with respect to the standard basis has the form $\begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix}$, where $A \in O_{n-1}(\mathbf{R})$.
- (c) Use induction on n to prove the Reflection Theorem. (What are the elements of $O_1(\mathbf{R})$?)
- 5. This problem gives an alternative proof of Euler's Theorem that any element of $SO_3(\mathbf{R})$ is a rotation.
 - (a) Prove that a product of two reflections in $O_n(\mathbf{R})$ must fix an (n-2)-dimensional subspace. (Prop. 3.6.6(a) may be helpful.)
 - (b) Use the Reflection Theorem to prove that if T is a linear transformation in $SO_3(\mathbf{R})$, then T is a rotation.
- 6. This problem expresses the isometry group of \mathbf{R}^n in semidirect product form.
 - (a) For an orthogonal operator φ in $O_n(\mathbf{R})$ and a translation $t_{\mathbf{v}}$, give a geometric description of $\varphi t_{\mathbf{v}} \varphi^{-1}$. (Suggestion: Compute $\varphi t_{\mathbf{v}} \varphi^{-1}(\mathbf{x})$ in terms of φ and \mathbf{v} .)
 - (b) Prove that the isometry group G of \mathbf{R}^n is isomorphic to the semidirect product $\mathbf{R}^n \rtimes O_n(\mathbf{R})$, where \mathbf{R}^n is the group of translations of \mathbf{R}^n , and the homomorphism from $O_n(\mathbf{R})$ to $\operatorname{Aut}(\mathbf{R}^n)$ sends the matrix A to the map φ_A , where $\varphi_A(\mathbf{v}) = A\mathbf{v}$. (Suggestion: This essentially means showing that the operation in G is equivalent to the operation in $\mathbf{R}^n \rtimes O_n(\mathbf{R})$.)