Math 131B, Wed Oct 28

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Reading for today: 7.6. Reading for Mon: 8.1–8.2.
- PS07 due today.
- Problem session Fri Oct 30, 10:00–noon on Zoom.

The Lebesgue integral so far

can

Let X = [a, b] or S^1 . We define an integral $\int_X f$ that extends the Riemann integral on X, such that:

- (Lebesgue Axiom 1) Basically any reasonable nonnegative function can be integrated, though we might get +∞.
- (Lebesgue Axiom 2) If $\int_X |f|$ is finite, then $\int_X f$ exists as a complex number and has the usual properties.
- (Lebesgue Axiom 3) Functions can be changed on a set of measure zero without affecting their integrals.
- (Lebesgue Axiom 4) The Lebesgue integral has the Monotone and Dominated Convergence properties.

 $L^2(X)$ as an inner product space $\{I \mid (I \mid I^2 < \sigma) \}$ Theorem Let X = [a, b], S^1 , or \mathbb{R} . Then $L^2(X)$ is a function space, and square-integrable $\langle f,g\rangle = \int_{Y} f(x)\overline{g(x)}$ functions is an inner product on $L^2(X)$. Sketch proof: Given Sifl², Sigl² < 00, $(|+|-|g|)^2 \ge 0$ $|+|g| \le \pm |+|^2 + \pm |g|^2$

 $= \sum \int_{X} H_{gl} < \infty$ $=> |f+g|^2 \leq |f|^2 + 2|fg|+|g|^2$ => Saltry 2 ~ all Sx finite. <f,g>= {fg is IP! see PSOG for Riemann version; Lebesque exactly same.

Lebesgue Axioms 5 and 6 Recall C°(S') has holes!

Lebesgue Axiom 5: $L^{2}(X)$ is complete in the L^{2} metric. A way to conjure up solutions to problems

Lebesgue Axiom 6: If X = [a, b] or S^1 , then $C^0(X)$ is a dense subset of $L^2(X)$. In other words, for every $f \in L^2(X)$ and every $\epsilon > 0$, there exists some $g \in C^0(X)$ with $||f - g|| < \epsilon$.

inf_=fel2(x)

(日) (四) (日) (日) (日)

Recap

Lebesgue Axiom 1: The function space $\mathcal{M}(X)$ contains almost all examples encountered in practice. For any $f \in \mathcal{M}(X)$, $\int_{Y} |f|$ is a well-defined nonnegative extended real number (i.e., the integral could have value $+\infty$). **Lebesgue Axiom 2:** The Lebesgue integral $\int_{x} f$ is well-defined on the space $L^1(X)$ of all $f \in \mathcal{M}(X)$ such that $\int_{-\infty}^{\infty} |f| < \infty$. It extends the Riemann integral and has similar formal properties. **Lebesgue Axiom 3:** The Lebesgue integral $\int_{C} f$ is unaffected by changing the values of f on a set of measure zero. **Lebesgue Axiom 4:** Unlike the Riemann integral, the Lebesgue 🔪 integral satisfies the monotone and dominated convergence properties.

Lebesgue Axiom 5: The function space $L^2(X)$ is an inner product space that is complete in the L^2 metric. **Lebesgue Axiom 6:** Continuous functions (or continuous functions with compact support, for $X = \mathbb{R}$) are dense in $L^2(X)$.

Hilbert spaces

See also: Statistics, machine learning

Definition A Hilbert space is an inner product space that is complete in the inner product metric. (L^2 here) THE example: By Lebesgue Axiom 5, $L^2(S^1)$ is a Hilbert space. (This is the only reason we need Lebesgue!) (and So iy $L^2(R)$)

・ロト ・ 何ト ・ ヨト ・ ヨト … ヨ

Goal of 7.6 Recall: To say $\{e_n \mid n \in \mathbb{Z}\}$ is an orthonormal basis for \mathcal{H} means that $\{e_n \mid n \in \mathbb{Z}\}$ is orthonormal and that for $f \in \mathcal{H}$, we have that $f = \sum_{n \in \mathbb{Z}} \hat{f}(n)e_n$, RHS converges AND is equal to f.

where **convergence is in**
$$L^2$$
, i.e.,
$$\lim_{N \to \infty} \left\| f - \sum_{n=-N}^{N} \hat{f}(n) e_n \right\| = 0.$$

Goal of 7.6: If \mathcal{H} is a Hilbert space with an orthonormal basis, what can we say about \mathcal{H} ?

(Not yet ready to prove that $\{e_n \mid n \in \mathbb{Z}\}$ is an orthonormal basis for \mathcal{H} .)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Hilbert Space Absolute Convergence Theorem

 \mathcal{H} Hilbert space, $\mathcal{B} = \{u_n \mid n \in \mathbb{N}\}$ an orthogonal set of nonzero vectors in \mathcal{H} , $c_n \in \mathbb{C}$. (Everything we do also works for $\mathcal{B} = \{u_n \mid n \in \mathbb{Z}\}$, but we stick with \mathbb{N} to avoid saying everything twice.)

One cool thing about Hilbert spaces:

Proof: PS08. This is the **only** place we use completeness of \mathcal{H} , so the only place we (very indirectly) need Lebesgue!

In a Hilbert space, generalized Fourier series all converge

 \mathcal{H} Hilbert space, $\mathcal{B} = \{u_n \mid n \in \mathbb{N}\}$ an orthogonal set of nonzero vectors in \mathcal{H} , where \mathcal{L} .

Corollary

The generalized Fourier series of any $f \in \mathcal{H}$ relative to \mathcal{B} converges to some element of \mathcal{H} (though not necessarily f).

Proof: By Bessel (Sec 7.3), we have

So ŽIP(nI) Ilunii (onrs (to its up) 2 IFINIL UNIT CONVS. 2 flulu conve by HSACT.

Special case: For any f in $L^{2}(S^{1})$, we see that the Fourier Series converges in the L^{2} metric.

(This is subtle: There exist continuous functions on S^1 whose Fourier Series diverge on an uncountable set, or in fact, diverge on any set of measure 0 in S^1.)

Hilbert Space Comparison Test

Corollary \mathcal{H} Hilbert space, $\mathcal{B} = \{u_n \mid n \in \mathbb{N}\}$ an orthogonal set of nonzero vectors in \mathcal{H} , $b_n, c_n \in \mathbb{C}$. If $\sum c_n u_n$ converges in \mathcal{H} , and $|b_n| \leq |c_n|$ for all $n \in \mathbb{N}$, then $\sum b_n u_n$ also converges in \mathcal{H} . (HSACT) Proof: $\frac{\mathcal{E}}{\mathcal{E}}(u_n(onv)) = \frac{\mathcal{E}}{\mathcal{E}}(u_n)^2 ||u_n||^2 (onv)$ 2 | by P/ uy |2 convs (Compailed by un convs (HSACT) Isomorphism Theorem for Fourier Series

 \mathcal{H} Hilbert space, $\mathcal{B} = \{u_n \mid i \in \mathbb{N}\} \subset \mathcal{H}$ orthogonal set of nonzero vectors.

Theorem TFAE: I.e., < , > in H is just the dot product, computed with respect to coords in the basis B.

イロト 不得 トイヨト イヨト

1. \mathcal{B} is an orthogonal basis for \mathcal{H} . 2. (Parseval 1) For any $f, g \in \mathcal{H}$, $\langle f, g \rangle = \sum_{n=1}^{\infty} \hat{f}(n)\overline{\hat{g}(n)} \langle u_n, u_n \rangle$. 3. (Parseval 2) For any $f \in \mathcal{H}$, $||f||^2 = \sum_{n=1}^{\infty} |\hat{f}(n)|^2 \langle u_n, u_n \rangle$. 4. For any $f \in \mathcal{H}$, if $\langle f, u_n \rangle = 0$ for all $n \in \mathbb{N}$, then f = 0.

Sp. case: If $\{e_n \mid n \in \mathbb{Z}\}$ ortho*normal* basis for \mathcal{H} , then for $f \in \mathcal{H}$,

$$\int_{0}^{1} |f(x)|^{2} = \|f\|^{2} = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|^{2}.$$

Su this sum collapses =0 unless n=1to k= n term $\sum_{n=1}^{\infty} \widehat{f}(n) \overline{g}(n) \langle y_n, u_n \rangle.$

What we know and don't know

- ▶ We know that L²(S¹) is a Hilbert space. (Rather, we essentially assume this by Lebesgue Axiom 5.)
- We therefore know that if we can show that {e_n | n ∈ Z} is an orthonormal basis for L²(S¹), all kinds of good stuff happens.

We don't yet know that {e_n} is an orthonormal basis for L²(S¹)! (In fact, this is just a restatement of our main problem, but in L².) So that's our main job now.