1. (15 points) Let H be a Hilbert space, and let {u, | n € N} be a set of nonzero vectors
in H.

(a)
(b)

Define what it means for {u, | n € N} to be an orthogonal set.

Define what it means for {u, | n € N} to be an orthogonal basis.
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2. (15 points)
(a) For f in the Schwartz space S(R), define the Fourier transform fm of f.

(b) State the Fourier inversion theorem in the case of f € S(R). (In other words, what do
you need to do to f to recover f7)
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13. (15 points) PROOF QUESTION. Suppose f € L% and Jet g
Prove that for n € Z, g(n) = f(—n). (Remember that f and § here refer to

coefficients, and not the Fourier transt(@
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