More about convergence and divergence tests for series Math 131A

In these notes, we give alternate versions of some of the most useful convergence/divergence tests. We assume the comparison test as background.

Theorem 1 (Limit comparison test). Let $\sum a_n$ and $\sum b_n$ be series, and suppose that there exist constants $K \in \mathbf{N}$ and $L, M \in \mathbf{R}$ such that for $n \ge K$, we have that $a_n, b_n > 0$ and

$$0 < L \le \frac{a_n}{b_n} \le M. \tag{1}$$

Then $\sum a_n$ converges if and only if $\sum b_n$ converges.

Proof. Exercise. (Apply the ordinary comparison test.)

Corollary 2. If there exists some $K_1 \in \mathbf{N}$ such that $a_n, b_n > 0$ for $n \ge K_1$, and also $\lim \frac{a_n}{b_n} = C$, where $0 < C < +\infty$, then $\sum a_n$ converges if and only if $\sum b_n$ converges.

Proof. Exercise. (Apply Theorem 1; see below for an example of how to show that the required hypothesis holds.) \Box

We also record the following simplified versions of the ratio and root tests, along with their correspondingly somewhat simpler proofs.

Theorem 3 (Simplified root test). Let $\sum a_n$ be a series, and suppose

$$\lim |a_n|^{1/n} = L$$

1. If $0 \le L < 1$, then $\sum a_n$ converges absolutely.

2. If L > 1 (including $L = +\infty$), then $\sum a_n$ diverges.

Proof. We first observe that by the definition of limit and the Archimedean Property, in all cases, for any $\epsilon > 0$, there exists $K \in \mathbf{N}$ such that for $n \ge K$, we have

$$\left|\left|a_{n}\right|^{1/n} - L\right| < \epsilon,\tag{2}$$

or in other words,

$$L - \epsilon < |a_n|^{1/n} < L + \epsilon.$$
(3)

In the case L < 1, taking $\epsilon = \frac{1-L}{2} > 0$ in (3) and letting $r = \frac{L+1}{2} < 1$, we see that there exists $K \in \mathbf{N}$ such that for $n \ge K$, we have

$$|a_n|^{1/n} < L + \epsilon = r < 1.$$

$$\tag{4}$$

It follows that $|a_n| < r^n$ for $n \ge K$, so $\sum |a_n|$ converges by comparison with the convergent geometric series $\sum r^n$.

In the case L > 1, taking $\epsilon = \frac{L-1}{2} > 0$ in (3) and letting $r = \frac{L+1}{2} > 1$, we see that there exists $K \in \mathbf{N}$ such that for $n \ge K$, we have

$$1 < r = L - \epsilon < |a_n|^{1/n} \,. \tag{5}$$

It follows that $|a_n| > r^n$, and therefore, that $\lim |a_n| = +\infty$. Now, if $\lim a_n = 0$, it would follow that $\lim |a_n| = 0$; contradiction. Therefore, $\lim a_n \neq 0$, and $\sum a_n$ diverges by the *n*th term test.

Theorem 4 (Simplified ratio test). Let $\sum a_n$ be a series such that $a_n \neq 0$ for all n, and suppose

$$\lim \left| \frac{a_{n+1}}{a_n} \right| = L.$$

- 1. If L < 1, then $\sum a_n$ converges absolutely.
- 2. If L > 1 (including $L = +\infty$), then $\sum a_n$ diverges.

Proof. By the argument in the proof of Theorem 3, we see that for any $\epsilon > 0$, there exists $K \in \mathbf{N}$ such that for $n \geq K$,

$$L - \epsilon < \left| \frac{a_{n+1}}{a_n} \right| < L + \epsilon.$$
(6)

In the case L < 1, again following the proof of Theorem 3, we see that for $r = \frac{L+1}{2} < 1$, there exists $K \in \mathbf{N}$ such that for $n \ge K$, we have

$$\left|\frac{a_{n+1}}{a_n}\right| < r < 1,\tag{7}$$

or in other words, $|a_{n+1}| < r |a_n|$. An easy induction then shows that for $n \ge K$,

$$|a_n| \le |a_K| r^{n-K}. \tag{8}$$

Therefore, making the change of variables m = n - K, since the geometric series

$$\sum_{n=K}^{\infty} |a_K| r^{n-K} = \sum_{m=0}^{\infty} |a_K| r^m$$
(9)

converges, by comparison, so does $\sum a_n$.

In the case L > 1, we see by Exercise 9.12 that $\lim |a_n| = +\infty$. By the argument used in the L > 1 case of the root theorem, it must be the case that $\lim a_n \neq 0$, so $\sum a_n$ diverges by the *n*th term test.

Example 5. Problem: Let $a_n = \frac{7n^{25} + 11n^{12}}{3^n - 5n^{16}}$. Does $\sum a_n$ converge or diverge?

Before we start the problem, we observe that by Asymptotics, $7n^{25} >> 11n^{12}$ and $3^n >> 5n^{16}$, so we should suspect (without proof as of yet) that the problem will boil down to the convergence or divergence of $\sum \frac{7n^{25}}{3^n}$. So, letting $b_n = \frac{7n^{25}}{3^n}$ and forgetting about the original problem for the moment, here are two ways to approach $\sum b_n$.

1. Applying the Ratio Test, we see that

$$\frac{b_{n+1}}{b_n} = \frac{b_{n+1}}{b_n} = \left(\frac{7(n+1)^{25}}{3^{n+1}}\right) \left/ \left(\frac{7n^{25}}{3^n}\right) = \left(\frac{3^n}{3^{n+1}}\right) \left(\frac{7(n+1)^{25}}{7n^{25}}\right) = \left(\frac{1}{3}\right) \left(\frac{n+1}{n}\right)^{25} = \left(\frac{1}{3}\right) \left(1 + \frac{1}{n}\right)^{25}.$$
(10)

Therefore, by the limit laws and the fact that $\lim \frac{1}{n} = 0$,

$$\lim \left| \frac{b_{n+1}}{b_n} \right| = \lim \frac{1}{3} \left(1 + \frac{1}{n} \right)^{25} = \frac{1}{3} \left(\lim \left(1 + \frac{1}{n} \right) \right)^{25} = \frac{1}{3} (1^{25}) = \frac{1}{3} < 1, \quad (11)$$

which means that $\sum b_n$ converges, by the Ratio Test.

2. Applying the Root Test, we see that

$$|b_n|^{1/n} = \left(\frac{7n^{25}}{3^n}\right)^{1/n} = \frac{7^{1/n}n^{25/n}}{3} = \frac{7^{1/n}(n^{1/n})^{25}}{3}.$$
 (12)

Therefore, by the limit laws and the fact that $\lim n^{1/n} = \lim a^{1/n} = 1$,

$$\lim |b_n|^{1/n} = \lim \frac{7^{1/n} (n^{1/n})^{25}}{3} = \frac{(\lim 7^{1/n}) (\lim n^{1/n})^{25}}{3} = \frac{1}{3} < 1,$$
(13)

which means that $\sum b_n$ converges, by the Root Test.

Returning to the original problem, we hope that we can now compare $\sum a_n$ to $\sum b_n$ via the Limit Comparison Test. So first,

$$\frac{a_n}{b_n} = \left(\frac{7n^{25} + 11n^{12}}{3^n - 5n^{16}}\right) \left/ \left(\frac{7n^{25}}{3^n}\right) \\
= \left(\frac{7n^{25} + 11n^{12}}{3^n - 5n^{16}}\right) \left(\frac{3^n}{7n^{25}}\right) \\
= \frac{7n^{25}(3^n) + 11n^{12}(3^n)}{7n^{25}3^n - 35n^{41}} \\
= \frac{1 + \left(\frac{11}{7n^{13}}\right)}{1 - \left(\frac{5n^{16}}{3^n}\right)},$$
(14)

where in the last step, we divide top and bottom by $7n^{25}3^n$. Therefore, by Asymptotics,

$$\lim \frac{a_n}{b_n} = \lim \frac{1 + \left(\frac{11}{7n^{13}}\right)}{1 - \left(\frac{5n^{16}}{3^n}\right)},$$

$$= \frac{1 + \lim \left(\frac{11}{7n^{13}}\right)}{1 - \lim \left(\frac{5n^{16}}{3^n}\right)},$$

$$= \frac{1+0}{1-0} = 1.$$
 (15)

Since $0 < 1 < +\infty$, by the Limit Comparison Test, $\sum a_n$ converges if and only if $\sum b_n$ converges. However, since we already showed that $\sum b_n$ converges, $\sum a_n$ converges as well.