
More about convergence and divergence tests for series
Math 131A

In these notes, we give alternate versions of some of the most useful convergence/divergence
tests. We assume the comparison test as background.

Theorem 1 (Limit comparison test). Let
∑

an and
∑

bn be series, and suppose that

there exist constants K ∈ N and L,M ∈ R such that for n ≥ K, we have that an, bn > 0
and

0 < L ≤ an
bn

≤ M. (1)

Then
∑

an converges if and only if
∑

bn converges.

Proof. Exercise. (Apply the ordinary comparison test.)

Corollary 2. If there exists some K1 ∈ N such that an, bn > 0 for n ≥ K1, and also

lim
an
bn

= C, where 0 < C < +∞, then
∑

an converges if and only if
∑

bn converges.

Proof. Exercise. (Apply Theorem 1; see below for an example of how to show that the
required hypothesis holds.)

We also record the following simplified versions of the ratio and root tests, along with
their correspondingly somewhat simpler proofs.

Theorem 3 (Simplified root test). Let
∑

an be a series, and suppose

lim |an|1/n = L.

1. If 0 ≤ L < 1, then
∑

an converges absolutely.

2. If L > 1 (including L = +∞), then
∑

an diverges.

Proof. We first observe that by the definition of limit and the Archimedean Property, in all
cases, for any ϵ > 0, there exists K ∈ N such that for n ≥ K, we have∣∣∣|an|1/n − L

∣∣∣ < ϵ, (2)

or in other words,
L− ϵ < |an|1/n < L+ ϵ. (3)

In the case L < 1, taking ϵ =
1− L

2
> 0 in (3) and letting r =

L+ 1

2
< 1, we see that

there exists K ∈ N such that for n ≥ K, we have

|an|1/n < L+ ϵ = r < 1. (4)

It follows that |an| < rn for n ≥ K, so
∑

|an| converges by comparison with the convergent

geometric series
∑

rn.
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In the case L > 1, taking ϵ =
L− 1

2
> 0 in (3) and letting r =

L+ 1

2
> 1, we see that

there exists K ∈ N such that for n ≥ K, we have

1 < r = L− ϵ < |an|1/n . (5)

It follows that |an| > rn, and therefore, that lim |an| = +∞. Now, if lim an = 0, it would
follow that lim |an| = 0; contradiction. Therefore, lim an ̸= 0, and

∑
an diverges by the nth

term test.

Theorem 4 (Simplified ratio test). Let
∑

an be a series such that an ̸= 0 for all n, and
suppose

lim

∣∣∣∣an+1

an

∣∣∣∣ = L.

1. If L < 1, then
∑

an converges absolutely.

2. If L > 1 (including L = +∞), then
∑

an diverges.

Proof. By the argument in the proof of Theorem 3, we see that for any ϵ > 0, there exists
K ∈ N such that for n ≥ K,

L− ϵ <

∣∣∣∣an+1

an

∣∣∣∣ < L+ ϵ. (6)

In the case L < 1, again following the proof of Theorem 3, we see that for r =
L+ 1

2
< 1,

there exists K ∈ N such that for n ≥ K, we have∣∣∣∣an+1

an

∣∣∣∣ < r < 1, (7)

or in other words, |an+1| < r |an|. An easy induction then shows that for n ≥ K,

|an| ≤ |aK | rn−K . (8)

Therefore, making the change of variables m = n−K, since the geometric series

∞∑
n=K

|aK | rn−K =

∞∑
m=0

|aK | rm (9)

converges, by comparison, so does
∑

an.

In the case L > 1, we see by Exercise 9.12 that lim |an| = +∞. By the argument used
in the L > 1 case of the root theorem, it must be the case that lim an ̸= 0, so

∑
an diverges

by the nth term test.

Example 5. Problem: Let an =
7n25 + 11n12

3n − 5n16
. Does

∑
an converge or diverge?

Before we start the problem, we observe that by Asymptotics, 7n25 >> 11n12 and
3n >> 5n16, so we should suspect (without proof as of yet) that the problem will boil down

to the convergence or divergence of
∑ 7n25

3n
. So, letting bn =

7n25

3n
and forgetting about

the original problem for the moment, here are two ways to approach
∑

bn.
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1. Applying the Ratio Test, we see that∣∣∣∣bn+1

bn

∣∣∣∣ = bn+1

bn

=

(
7(n+ 1)25

3n+1

)/(
7n25

3n

)
=

(
3n

3n+1

)(
7(n+ 1)25

7n25

)
=

(
1

3

)(
n+ 1

n

)25

=

(
1

3

)(
1 +

1

n

)25

.

(10)

Therefore, by the limit laws and the fact that lim
1

n
= 0,

lim

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
1

3

(
1 +

1

n

)25

=
1

3

(
lim

(
1 +

1

n

))25

=
1

3
(125) =

1

3
< 1, (11)

which means that
∑

bn converges, by the Ratio Test.

2. Applying the Root Test, we see that

|bn|1/n =

(
7n25

3n

)1/n

=
71/nn25/n

3
=

71/n(n1/n)25

3
. (12)

Therefore, by the limit laws and the fact that limn1/n = lim a1/n = 1,

lim |bn|1/n = lim
71/n(n1/n)25

3
=

(lim 71/n)(limn1/n)25

3
=

1

3
< 1, (13)

which means that
∑

bn converges, by the Root Test.

Returning to the original problem, we hope that we can now compare
∑

an to
∑

bn
via the Limit Comparison Test. So first,

an
bn

=

(
7n25 + 11n12

3n − 5n16

)/(
7n25

3n

)
=

(
7n25 + 11n12

3n − 5n16

)(
3n

7n25

)
=

7n25(3n) + 11n12(3n)

7n253n − 35n41

=
1 +

(
11

7n13

)
1−

(
5n16

3n

) ,
(14)
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where in the last step, we divide top and bottom by 7n253n. Therefore, by Asymptotics,

lim
an
bn

= lim
1 +

(
11

7n13

)
1−

(
5n16

3n

) ,
=

1 + lim
(

11
7n13

)
1− lim

(
5n16

3n

) ,
=

1 + 0

1− 0
= 1.

(15)

Since 0 < 1 < +∞, by the Limit Comparison Test,
∑

an converges if and only if
∑

bn

converges. However, since we already showed that
∑

bn converges,
∑

an converges as

well.
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