Math 131A, problem set 03 Outline due: Wed Feb 14 Completed version due: Mon Feb 19 Last revision due: Thu Mar 28

Problems to be done but not turned in: 8.1, 8.3, 8.5, 8.7, 8.9, 9.1, 9.3, 9.5, 9.7, 9.9, 9.11, 9.13, 9.15, 9.17.

Problems to be turned in: All numbers refer to exercises in Ross. In Problems 1–4, prove your results using the definition of the limit, and not the limit laws (e.g., not the Squeeze Lemma).

- 1. Ex. 8.4. Note that we cannot assume that $\lim_{n \to \infty} t_n$ exists.
- 2. (a) Give an example of convergent sequences s_n and t_n such that $s_n < t_n$ for all n, but $\lim_{n \to \infty} s_n = \lim_{n \to \infty} t_n$.
 - (b) Prove that if s_n and t_n are convergent sequences such that $s_n \leq t_n$ for all n, then $\lim_{n \to \infty} s_n \leq \lim_{n \to \infty} t_n$. (Suggestion: Contradiction.)
- 3. (a) For $a \in \mathbf{R}$, suppose (x_n) is a sequence such that for all n, $|x_n a| < \frac{1}{n}$. Prove that $\lim_{n \to \infty} x_n = a$.
 - (b) Recall that to say that S is *dense* in **R** means that for any $a, b \in \mathbf{R}$ such that a < b, there exists some $x \in S$ such that a < x < b. Prove that if S is dense in **R** and $a \in \mathbf{R}$, there exists a sequence (x_n) in S such that $a < x_n$ for all n and $\lim_{n \to \infty} x_n = a$. (Suggestion: Use the previous part of the problem to choose the sequence (x_n) nonconstructively.)
- 4. Let a_n be a sequence such that $\lim_{n \to \infty} na_n = 2$.
 - (a) Prove that there exists some K such that if n > K, then $\frac{1}{n} \le a_n \le \frac{3}{n}$.
 - (b) Prove that $\lim_{n \to \infty} a_n = 0$.
- 5. Find the value of $\lim_{n \to \infty} \frac{3 + 2\cos n^2}{n}$, and prove your answer, using either the definition of limit or the Squeeze Lemma (Ex. 8.5).
- 6. Suppose that (a_n) and (b_n) are sequences such that $\lim_{n \to \infty} a_n = -3$ and $\lim_{n \to \infty} b_n = 5$. Determine the value of $\lim_{n \to \infty} \frac{2a_n b_n - (b_n + 1)\sqrt{7 + a_n^2}}{a_n^2 + 3}$, and carefully use the limit laws of Ch. 9 and Example 5 of Ch. 8 to prove your answer.
- 7. Ex. 8.8(c). Suggestion: Use the square root techniques of Ch. 8 and the limit laws of Ch. 9.