Math 131A, problem set 01 Outline due: Wed Jan 31 Completed version due: Mon Feb 05 Last revision due: Tue Feb 27

Problems to be done but not turned in: 3.1, 3.3, 3.5, 3.7, 4.1, 4.3, 4.5, 4.7, 4.9, 4.11, 4.13, 4.15.

Problems to be turned in: All numbers refer to exercises in Ross.

- 1. Let a, b, c be real numbers. Using only the order axioms of **R**, prove that if $a \leq b$ and b < c, then a < c. (Note that by definition, b < c means $b \leq c$ and $b \neq c$. You may also find it helpful to use contradiction.)
- 2. Let a, b be real numbers, and suppose that for all x < a, we have $x \le b$. Prove that $a \le b$. (Suggestion: Try contradiction.)
- For each of the following sets from Ex. 4.1, either list 3 different upper bounds and the sup of the set, or write NOT BOUNDED ABOVE: (e), (h), (k), (n) (the letter ℓ), (v). No proof necessary.
- 4. Let S = (-3, 5) (an open interval). Guess the value of sup S, and carefully prove your answer.
- 5. Let $S = \{x \in \mathbf{Q} \mid x > e\}$, where e is the base of the natural log. Guess the value of inf S, and carefully prove your answer.
- 6. Let $S = \left\{ \frac{3n-5}{4n+7} \middle| n \in \mathbb{Z}, n \ge 2 \right\}$. Guess the value of sup *S*, and carefully prove your answer. (Do not use the idea of limit, which we have not yet defined.)
- 7. (Arbitrarily Close Criterion) Suppose S is a nonempty subset of \mathbf{R} , and suppose u is an upper bound for S. Prove that the following are equivalent:
 - For every $\epsilon > 0$, there exists some $s \in S$ such that $u s < \epsilon$.
 - $u = \sup S$.

(Suggestion: Prove that the negations of each condition are equivalent.)