
Math 131A
Fractionology and asymptotics

There are two technical skills used in computing and proving limits (and later, sums of
series) that you will need repeatedly this semester: fractionology and asymptotics.

Fractionology. Suppose that f(n) and g(n) are functions of n, and you want to prove

that
f(n)

g(n)
< ϵ for large enough n (perhaps as part of proving that lim

f(n)

g(n)
= 0). Often

this can be achieved by finding some f1(n), g1(n) with two properties:

�

f(n)

g(n)
≤ f1(n)

g1(n)
; and

� It is algebraically (relatively) easy to prove that
f1(n)

g1(n)
< ϵ.

For in that case, we will be able to show that

f(n)

g(n)
≤ f1(n)

g1(n)
< ϵ.

Again, the point is that we want the new fraction
f1(n)

g1(n)
to be bigger, but simpler; in other

words, we are looking for some simpler
f1(n)

g1(n)
that will lie between

f(n)

g(n)
and ϵ.

The key points to remember are:

� A larger numerator makes a larger fraction, and a smaller numerator makes a smaller
fraction.

� A larger denominator makes a smaller fraction, and a smaller denominator makes a
larger fraction.

For example,

n2 + 1

2n4 + 5
≤ n2 + 1

2n4
(smaller denominator)

≤ n2 + n2

2n4
(larger numerator)

=
2n2

2n4
=

1

n2
.

On the other hand, for n ≥ 2, we have that 3 < n3, and n3 < 2n3− 3. Therefore, for n ≥ 2,

n2 − 7

2n3 − 3
≤ n2

2n3 − 3
(larger numerator)

≤ n2

n3
(smaller denominator if n ≥ 2)

=
1

n
.

Asymptotics. It will also be useful to be able to compare the rates of growth of various
sequences as n → ∞ (The Asymptotic Theorem, below). To state the main result, we use
the following idea.



Definition. Suppose an and bn are positive-valued sequences. To say that an << bn means
that

lim
an
bn

= 0.

Exercise. Prove that << is transitive, i.e., prove that if an << bn and bn << cn, then
an << cn.

We will not be able to prove our main result (The Asymptotics Theorem) completely
rigorously because we will not have proven the necssary calculus until the end of the course.
However, the theorem will be useful in considering examples, so for now, we list some
properties of exponential and log functions on which we will rely for now, and prove later.

� We assume that the usual algebraic properties of ab and lnx hold, including the fact
that ln(ex) = x for x ∈ R.

� We assume that if 0 < a < b, then ln a < ln b (i.e., lnx is increasing.)

� We assume that if (xn) is a convergent sequence such that xn > 0 and limxn > 0,
then lim(ln(xn)) = ln(limxn). (This condition may look strange, but as we shall soon
see, this says precisely that lnx is continuous for x > 0.)

Theorem (The Asymptotics Theorem). For fixed p > 0 and a > 1, we have that

1 << lnn << np << an << n!.

Proof. Exercise 9.14 implies that np << an, and Exercise 9.15 implies that an << n!, so it
remains to show that 1 << lnn and lnn << np.

To see that 1 << lnn, it suffices to show that lim(lnn) = +∞, for then Theorem 9.10

implies that lim

(
1

lnn

)
= 0. For M ∈ R, let N(M) = eM . If n ∈ Z, n > N(M), then

lnn > ln eM = M.

To see that lnn << np for p = 1, we begin with the fact that limn1/n = 1 (Theorem
9.7(c)). Then

lim

(
lnn

n

)
= lim

(
ln(n1/n)

)
= ln

(
lim(n1/n)

)
= ln 1 = 0.

A related, but more involved, argument actually works in general. However, that argument
requires much more calculus, so we omit it.

For example, since 1 << n1/2 =
√
n, we have that

lim
1√
n
= 0;

since lnn << n1/3, we have that

lim
lnn
3
√
n

= 0;

and since 10n << n!, we have that

lim
10n

n!
= 0.


