Supplemental notes on the singular value decomposition Math 129B

The Singular Value Decomposition. Let A be an $n \times k$ matrix, and let $s = \min(n, k)$. There exist an $n \times n$ orthogonal matrix U, a $k \times k$ orthogonal matrix V, and real numbers $\sigma_1 \ge \cdots \ge \sigma_s \ge 0$ such that

$$U^{t}AV = \Sigma = \begin{bmatrix} \sigma_{1} & & & \\ & \ddots & & \\ & & \sigma_{s} & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{bmatrix},$$
(1)

where the (i,i) entry of Σ is σ_i $(1 \le i \le s)$ and all other entries of Σ are 0. (Note that Σ is not necessarily a square matrix; in fact, Σ is $n \times k$.)

Since $U^t = U^{-1}$ and $V^{-1} = V^t$, we also have that

$$A = U\Sigma V^t.$$
⁽²⁾

This method of expressing A as a product of the form orthogonal-diagonal-orthogonal is called the singular value decomposition of A, and the real numbers $\sigma_1, \ldots, \sigma_s$ are called the singular values of A. The columns of the matrix V are called the right singular vectors of A, and the columns of U are called the left singular vectors of A.

Note that since (1) is equivalent to $AV = U\Sigma$, for $1 \le i \le s$, we have that $A\mathbf{v}_i = \sigma_i \mathbf{u}_i$. If $n \ge k$ (i.e., if A is "tall"), this accounts for all of the columns of AV; if n < k (i.e., if A is "fat"), then we also have $A\mathbf{v}_i = \mathbf{0}$ for $n < i \le k$.

The main point of the singular value decomposition of A is that the SVD gives a precise description of the geometry of the linear function $T : \mathbb{R}^k \to \mathbb{R}^n$ defined by $T(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^k$, in that:

- 1. If $n \ge k$ (i.e., if A is "tall"), then $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is an orthonormal basis for \mathbb{R}^k and $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ is an orthonormal basis for \mathbb{R}^n such that each \mathbf{v}_i is mapped onto the scalar multiple $\sigma_i \mathbf{u}_i$ of \mathbf{u}_i .
- 2. If n < k (i.e., if A is "fat"), then $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is an orthonormal basis for \mathbb{R}^k and $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ is an orthonormal basis for \mathbb{R}^n such that for $1 \le i \le n$, each \mathbf{v}_i is mapped onto the scalar multiple $\sigma_i \mathbf{u}_i$ of \mathbf{u}_i , and for $n < i \le k$, each \mathbf{v}_i is mapped to $\mathbf{0} \in \mathbb{R}^n$.

It can also be shown that \mathbf{v}_1 , which corresponds to the largest singular value σ_1 , is a unit vector in \mathbb{R}^k that has an image of largest possible norm, i.e.,

$$\max_{\mathbf{v}\in\mathbb{R}^{k},\|\mathbf{v}\|=1}\|T(\mathbf{v}_{1})\| = \|T(\mathbf{v}_{1})\| = \|\sigma_{1}\mathbf{u}_{1}\| = \sigma_{1}.$$
(3)

The SVD therefore provides the answer to many min/max problems arising from the geometry of T. For more on the applications of the SVD, including some applications to statistics, see *Matrix Computations*, by Golub and Van Loan.

Proof of SVD. Let $X = A^t A$; note that X is a $k \times k$ matrix. From PS11, there exists an orthonormal basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ for \mathbb{R}^k such that each \mathbf{v}_i is an eigenvector of X. Let λ_i be the eigenvalue of X associated with \mathbf{v}_i . From PS11, each $\lambda_i \geq 0$, so by reordering $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ if necessary, we may assume that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k \geq 0$.

For $1 \leq i \leq k$, let $\sigma_i = \sqrt{\lambda_i}$, which is a real number, since $\lambda_i \geq 0$. Let r be the largest integer such that $\lambda_r > 0$; i.e., pick r so that

$$\lambda_1 \geq \cdots \geq \lambda_r > 0 = \lambda_{r+1} = \cdots = \lambda_k.$$

Note that for $1 \leq i \leq r$, $\sigma_i = \sqrt{\lambda_i} > 0$, so we may define

$$\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i \qquad \text{for } 1 \le i \le r.$$
(4)

By PS11, since $\lambda_i = 0$ for $r + 1 \le i \le k$, we have that

$$\mathbf{0} = A\mathbf{v}_i \qquad \text{for } r+1 \le i \le k. \tag{5}$$

PS11 also implies that $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ is orthonormal. The Orthonormal Expansion Theorem (PS11) therefore implies that we may expand $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ to an orthonormal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_r, \mathbf{u}_{r+1}, \ldots, \mathbf{u}_n\}$ for \mathbb{R}^n .

Now let U be the $n \times n$ matrix whose columns are $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$, and let V be the $k \times k$ matrix whose columns are $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$. Since $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ and $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ are orthonormal bases for \mathbb{R}^n and \mathbb{R}^k , respectively, U and V are orthogonal. It therefore remains only to verify (1).

First, note that

$$AV = A[\mathbf{v}_1 \cdots \mathbf{v}_k] = [A\mathbf{v}_1 \cdots A\mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \cdots \sigma_r \mathbf{u}_r \ \mathbf{0} \cdots \mathbf{0}], \tag{6}$$

where the last equality follows from (4) and (5). Therefore,

$$U^{t}AV = \begin{bmatrix} \mathbf{u}_{1}^{t} \\ \vdots \\ \mathbf{u}_{k}^{t} \end{bmatrix} \begin{bmatrix} \sigma_{1}\mathbf{u}_{1} \cdots \sigma_{r}\mathbf{u}_{r} \mathbf{0} \cdots \mathbf{0} \end{bmatrix}$$
$$= \begin{bmatrix} \sigma_{1}\mathbf{u}_{1}^{t}\mathbf{u}_{1} \cdots \sigma_{r}\mathbf{u}_{1}^{t}\mathbf{u}_{r} \mathbf{u}_{1}^{t}\mathbf{0} \cdots \mathbf{u}_{1}^{t}\mathbf{0} \\ \vdots & \vdots & \vdots \\ \sigma_{1}\mathbf{u}_{k}^{t}\mathbf{u}_{1} \cdots \sigma_{r}\mathbf{u}_{k}^{t}\mathbf{u}_{r} \mathbf{u}_{k}^{t}\mathbf{0} \cdots \mathbf{u}_{k}^{t}\mathbf{0} \end{bmatrix}$$
$$= \begin{bmatrix} \sigma_{1}(\mathbf{u}_{1} \cdot \mathbf{u}_{1}) \cdots \sigma_{r}(\mathbf{u}_{1} \cdot \mathbf{u}_{r}) (\mathbf{u}_{1} \cdot \mathbf{0}) \cdots (\mathbf{u}_{1} \cdot \mathbf{0}) \\ \vdots & \vdots & \vdots \\ \sigma_{1}(\mathbf{u}_{k} \cdot \mathbf{u}_{1}) \cdots \sigma_{r}(\mathbf{u}_{k} \cdot \mathbf{u}_{r}) (\mathbf{u}_{k} \cdot \mathbf{0}) \cdots (\mathbf{u}_{k} \cdot \mathbf{0}) \end{bmatrix}$$
$$= \begin{bmatrix} \sigma_{1} & & \\ & \ddots & \\ & \sigma_{r} & \\ & & & 0 \end{bmatrix},$$
(7)

where the last equality holds because $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ is orthonormal. (Note that $U^t A V$ will not be a square matrix in general, even though we have drawn it as a square matrix to emphasize the diagonal entries.) Then, by setting $\sigma_{r+1} = \cdots = \sigma_s = 0$ if necessary, we obtain (1). The theorem follows. \Box