Supplemental notes on the singular value decomposition
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The Singular Value Decomposition. Let A be an n X k matriz, and let s = min(n, k). There
exist an n xXn orthogonal matriz U, a kx k orthogonal matriz V, and real numbers o1 > -+ > 05 >0
such that
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where the (i,1) entry of ¥ is 0; (1 <1 < s) and all other entries of ¥ are 0. (Note that ¥ is not
necessarily a square matriz; in fact, ¥ isn X k.)

Since U! = U~! and V~! = V!, we also have that
A=USV". 2)

This method of expressing A as a product of the form orthogonal-diagonal-orthogonal is called the
singular value decomposition of A, and the real numbers o1, ...,0, are called the singular values of
A. The columns of the matrix V' are called the right singular vectors of A, and the columns of U
are called the left singular vectors of A.

Note that since (1) is equivalent to AV = UX, for 1 < i < s, we have that Av; = o;u;. If n > k
(i.e., if A is “tall”), this accounts for all of the columns of AV if n < k (i.e., if A is “fat”), then we
also have Av; =0 for n < i < k.

The main point of the singular value decomposition of A is that the SVD gives a precise descrip-
tion of the geometry of the linear function T : R¥ — R"™ defined by T(x) = Ax for all x € R¥, in
that:

1. If n > k (i.e., if Ais “tall”), then {vy,...,vx} is an orthonormal basis for R* and {uy,...,u,}
is an orthonormal basis for R™ such that each v; is mapped onto the scalar multiple o;u; of
u;.

2. If n < k (i.e., if Ais “fat”), then {vi,..., vy} is an orthonormal basis for R¥ and {uy,...,u,}
is an orthonormal basis for R™ such that for 1 < ¢ < n, each v; is mapped onto the scalar
multiple o;u; of u;, and for n < @ < k, each v; is mapped to 0 € R"™.

It can also be shown that v, which corresponds to the largest singular value o1, is a unit vector
in R* that has an image of largest possible norm, i.e.,

max | T(v)[ = |T(vi)[| = oyl = o1 (3)
veRE ||v]=1

The SVD therefore provides the answer to many min/max problems arising from the geometry of
T. For more on the applications of the SVD, including some applications to statistics, see Matrix
Computations, by Golub and Van Loan.

Proof of SVD. Let X = A'A; note that X is a k x k matrix. From PS11, there exists an orthonormal
basis {vy,..., v} for R* such that each v; is an eigenvector of X. Let \; be the eigenvalue of X
associated with v;. From PS11, each A; > 0, so by reordering {v1,..., vy} if necessary, we may
assume that A\y > Ay > -+ > A\ > 0.



For 1 <14 <k, let 0; = v/\;, which is a real number, since A; > 0. Let r be the largest integer
such that A\, > 0; i.e., pick r so that

)\12"'2)\7“>0:)\T+1:--~:>\k.

Note that for 1 <i <7, 0; = v A; > 0, so we may define

1
u, = —Av; for1 <i<r. (4)
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By PS11, since A\; = 0 for r + 1 < i < k, we have that
0= Av; forr+1<14<k. (5)

PS11 also implies that {uy,...,u,} is orthonormal. The Orthonormal Expansion Theorem (PS11)
therefore implies that we may expand {uy, ..., u,} to an orthonormal basis {uy, ..., 0, Upt1,...,up}
for R™.

Now let U be the n X n matrix whose columns are {uy,...,u,}, and let V be the k x k matrix
whose columns are {vy,...,v,}. Since {uy,...,u,} and {vy,..., vy} are orthonormal bases for R"
and R¥ | respectively, U and V are orthogonal. It therefore remains only to verify (1).

First, note that

AV = Alvy - vg] =[Avy -+ Avy] =[ou; -+ opu,- 0 -+ 0], (6)

where the last equality follows from (4) and (5). Therefore,
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where the last equality holds because {uy,...,u,} is orthonormal. (Note that U*AV will not be a
square matrix in general, even though we have drawn it as a square matrix to emphasize the diagonal
entries.) Then, by setting 0,11 = -+- = 05, = 0 if necessary, we obtain (1). The theorem follows. [



