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The Singular Value Decomposition. Let A be an n × k matrix, and let s = min(n, k). There
exist an n×n orthogonal matrix U , a k×k orthogonal matrix V , and real numbers σ1 ≥ · · · ≥ σs ≥ 0
such that

U tAV = Σ =



σ1

. . .
σs

0
. . .

0


, (1)

where the (i, i) entry of Σ is σi (1 ≤ i ≤ s) and all other entries of Σ are 0. (Note that Σ is not
necessarily a square matrix; in fact, Σ is n× k.)

Since U t = U−1 and V −1 = V t, we also have that

A = UΣV t. (2)

This method of expressing A as a product of the form orthogonal-diagonal-orthogonal is called the
singular value decomposition of A, and the real numbers σ1, . . . , σs are called the singular values of
A. The columns of the matrix V are called the right singular vectors of A, and the columns of U
are called the left singular vectors of A.

Note that since (1) is equivalent to AV = UΣ, for 1 ≤ i ≤ s, we have that Avi = σiui. If n ≥ k
(i.e., if A is “tall”), this accounts for all of the columns of AV ; if n < k (i.e., if A is “fat”), then we
also have Avi = 0 for n < i ≤ k.

The main point of the singular value decomposition of A is that the SVD gives a precise descrip-
tion of the geometry of the linear function T : Rk → Rn defined by T (x) = Ax for all x ∈ Rk, in
that:

1. If n ≥ k (i.e., if A is “tall”), then {v1, . . . ,vk} is an orthonormal basis for Rk and {u1, . . . ,un}
is an orthonormal basis for Rn such that each vi is mapped onto the scalar multiple σiui of
ui.

2. If n < k (i.e., if A is “fat”), then {v1, . . . ,vk} is an orthonormal basis for Rk and {u1, . . . ,un}
is an orthonormal basis for Rn such that for 1 ≤ i ≤ n, each vi is mapped onto the scalar
multiple σiui of ui, and for n < i ≤ k, each vi is mapped to 0 ∈ Rn.

It can also be shown that v1, which corresponds to the largest singular value σ1, is a unit vector
in Rk that has an image of largest possible norm, i.e.,

max
v∈Rk,‖v‖=1

‖T (v)‖ = ‖T (v1)‖ = ‖σ1u1‖ = σ1. (3)

The SVD therefore provides the answer to many min/max problems arising from the geometry of
T . For more on the applications of the SVD, including some applications to statistics, see Matrix
Computations, by Golub and Van Loan.

Proof of SVD. Let X = AtA; note that X is a k×k matrix. From PS11, there exists an orthonormal
basis {v1, . . . ,vk} for Rk such that each vi is an eigenvector of X. Let λi be the eigenvalue of X
associated with vi. From PS11, each λi ≥ 0, so by reordering {v1, . . . ,vk} if necessary, we may
assume that λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.



For 1 ≤ i ≤ k, let σi =
√

λi, which is a real number, since λi ≥ 0. Let r be the largest integer
such that λr > 0; i.e., pick r so that

λ1 ≥ · · · ≥ λr > 0 = λr+1 = · · · = λk.

Note that for 1 ≤ i ≤ r, σi =
√

λi > 0, so we may define

ui =
1
σi

Avi for 1 ≤ i ≤ r. (4)

By PS11, since λi = 0 for r + 1 ≤ i ≤ k, we have that

0 = Avi for r + 1 ≤ i ≤ k. (5)

PS11 also implies that {u1, . . . ,ur} is orthonormal. The Orthonormal Expansion Theorem (PS11)
therefore implies that we may expand {u1, . . . ,ur} to an orthonormal basis {u1, . . . ,ur,ur+1, . . . ,un}
for Rn.

Now let U be the n× n matrix whose columns are {u1, . . . ,un}, and let V be the k × k matrix
whose columns are {v1, . . . ,vk}. Since {u1, . . . ,un} and {v1, . . . ,vk} are orthonormal bases for Rn

and Rk, respectively, U and V are orthogonal. It therefore remains only to verify (1).
First, note that

AV = A[v1 · · · vk] = [Av1 · · · Avn] = [σ1u1 · · · σrur 0 · · · 0], (6)

where the last equality follows from (4) and (5). Therefore,

U tAV =
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=
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0
. . .

0


,

(7)

where the last equality holds because {u1, . . . ,un} is orthonormal. (Note that U tAV will not be a
square matrix in general, even though we have drawn it as a square matrix to emphasize the diagonal
entries.) Then, by setting σr+1 = · · · = σs = 0 if necessary, we obtain (1). The theorem follows.


