Math 129B, problem set 10 Outline due: Wed May 02 Due: Mon May 07 Last revision due: TBA

Problems to be done, but not turned in: (4.1) 4, 8, 10, 15, 17, 21; (4.4) 5, 7, 12, 15, 18.

Problems to be turned in:

1. Does

 $\langle (v_1, v_2), (w_1, w_2) \rangle = v_1 w_1 - v_1 w_2 - v_2 w_1 + v_2 w_2$

define an inner product on \mathbb{R}^2 ? Prove or give a counterexample for each axiom that fails.

- 2. Does $\langle f, g \rangle = \int_0^1 x f(x) g(x) dx$ define an inner product on $\mathbb{C}([0, 1])$? Prove or give a counterexample for each axiom that fails.
- 3. (4.1) 22.
- 4. Let V be an inner product space, and let S be a subset (not necessarily a subspace) of V. Define

 $S^{\perp} = \{ \mathbf{v} \in V \mid \langle \mathbf{u}, \mathbf{v} \rangle = 0 \text{ for all } \mathbf{u} \in S \}.$

Prove that S^{\perp} is a subspace of V.

- 5. Let V be an inner product space, and let \mathbf{u} be a fixed nonzero vector in V.
 - (a) Define $L_{\mathbf{u}}: V \to \mathbb{R}$ by $L_{\mathbf{u}}(\mathbf{v}) = \langle \mathbf{u}, \mathbf{v} \rangle$ for all $\mathbf{v} \in V$. Prove that $L_{\mathbf{u}}$ is linear.
 - (b) What is $\operatorname{im} L_{\mathbf{u}}$? Prove your answer.
 - (c) Now suppose also that V is finite-dimensional. Prove that dim $\mathbf{u}^{\perp} = \dim V 1$. (See problem 4 for the definition of \mathbf{u}^{\perp} . Suggestion: How does \mathbf{u}^{\perp} relate to $L_{\mathbf{u}}$?)
- 6. (a) (4.4) 16(a).(b) (4.4) 17.