Math 129B, problem set 09 Outline due: Wed Apr 18 Due: Mon Apr 30 Last revision due: Mon May 14

Important terms and symbols:

multiplicity Let A be an $n \times n$ matrix, and suppose that c is an eigenvalue of A. We define the *multiplicity* of c to be the largest integer m such that $(\lambda - c)^m$ divides the characteristic polynomial of A.

Problems to be done, but not turned in: (8.2) 1, 3, 9, 12, 15; (8.3) 2, 5, 7.

Problems to be turned in:

- 1. (a) For $\mu > 0$, prove that $\{\cos(\mu x), \sin(\mu x)\}$ is linearly independent. (Suggestion: Use the definition.)
 - (b) For $\lambda > 0$, prove that $\{e^{\lambda x}, e^{-\lambda x}\}$ is linearly independent.
 - (c) Let $\{\lambda_1, \ldots, \lambda_\ell\}$ and $\{\mu_1, \ldots, \mu_m\}$ be sets of distinct positive real numbers. (Note that we may have $\lambda_i = \mu_j$.) Prove that

$$\left\{e^{\lambda_1 x}, e^{-\lambda_1 x}, \dots, e^{\lambda_\ell x}, e^{-\lambda_\ell x}, \cos(\mu_1 x), \sin(\mu_1 x), \dots, \cos(\mu_m x), \sin(\mu_m x)\right\}$$

is linearly independent.

- 2. Fix a constant $c \in \mathbb{R}$.
 - (a) Let A be an $n \times n$ matrix, and suppose that $k = \dim E_A(c) > 0$. Prove that there exists an invertible matrix P such that columns $1, \ldots, k$ of $P^{-1}AP$ are $c\mathbf{e}_1, \ldots, c\mathbf{e}_k$, respectively.
 - (b) Let A be an $n \times n$ matrix, and suppose that c is an eigenvalue of A. Use part (a) to prove that dim $E_A(c) \leq \text{multiplicity}(c)$.
- 3. Consider the matrices

$$A_1 = \begin{bmatrix} -5 & 0 & -6 \\ 3 & 1 & 3 \\ 3 & 0 & 4 \end{bmatrix}, \qquad A_2 = \begin{bmatrix} 2 & -1 & -3 \\ -2 & 3 & 6 \\ 4 & -1 & -5 \end{bmatrix}.$$

You may take it as given that the characteristic polynomials of A_1 and A_2 are both equal to $(x-1)^2(x+2)$. For each of the matrices A_i , either find a matrix P such that $P^{-1}A_iP$ is diagonal, or prove that no such P exists.

(cont. on other side)

- 4. Suppose A is an $n \times n$ matrix such that $A(A 3I_n) = 0$. (Note that $(A 3I_n)A = A^2 3A = A(A 3I_n) = 0$ as well.)
 - (a) Prove that every $\mathbf{v} \in \mathbb{R}^n$ is a linear combination of $A\mathbf{v}$ and $(A\mathbf{v} 3\mathbf{v})$.
 - (b) Prove that if λ is an eigenvalue of A, then either $\lambda = 0$ or $\lambda = 3$.
 - (c) Prove that for $\mathbf{v} \in \mathbb{R}^n$, $(A\mathbf{v} 3\mathbf{v}) \in E_A(0)$ and $A\mathbf{v} \in E_A(3)$. (Suggestion: Think of $E_A(0)$ and $E_A(3)$ as nullspaces.)
 - (d) Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ be a basis for $E_A(0)$, and let $\{\mathbf{w}_1, \ldots, \mathbf{w}_\ell\}$ be a basis for $E_A(3)$. Prove that $\{\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{w}_1, \ldots, \mathbf{w}_\ell\}$ spans \mathbb{R}^n .
 - (e) Prove that A is diagonalizable, and describe what a diagonal matrix similar to A will look like.
- 5. Let V be a vector space such that dim V = 4, and let $T : V \to V$ and $L : V \to V$ be linear. Suppose there exist nonzero vectors $\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ such that $\mathbf{w}, \mathbf{x} \in E_T(3)$, $\mathbf{y}, \mathbf{z} \in E_T(-7), \mathbf{w}, \mathbf{y} \in E_L(11)$, and $\mathbf{x}, \mathbf{z} \in E_L(-13)$. Prove that there exists a basis B for V such that $[T]_{B,B}$ and $[L]_{B,B}$ are diagonal. (In particular, describe $[T]_{B,B}$ and $[L]_{B,B}$.)