Math 129B, problem set 08 Outline due: Wed Apr 11 Due: Mon Apr 16 Last revision due: Mon May 14

Problems to be done, but not turned in: (6.4) 2, 6; (6.5) 1, 5, 6; (8.1) 2, 9, 11, 15.

Problems to be turned in:

1. Let $B = \{1, 2 + x, 3 - x + x^2\}$ and $B' = \{1 + 2x - x^2, x - 3x^2, x^2\}$ be bases for \mathbb{P}_2 (i.e., you may take this as given). Let $T : \mathbb{P}_2 \to \mathbb{P}_2$ be the linear function such that

$$[T]_{B,B} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & -2 \\ 0 & 2 & -4 \end{bmatrix}.$$

- (a) Find a basis for $\operatorname{im} T$. Prove your answer.
- (b) Calculate $[T]_{B',B'}$. You can either use the change-of-basis formula or calculate $[T]_{B',B'}$ directly from its definition.
- 2. For a fixed positive integer n, let $T_n : \mathbb{P}_n \to \mathbb{P}_n$ be defined by the formula

$$T_n(p(x)) = p(x-1),$$

and let $B = \{1, \ldots, x^n\}$ be the standard basis for \mathbb{P}_n .

- (a) Describe $[T_n]_{B,B}$, the matrix of T_n relative to the basis B. (Justify your answer.)
- (b) Find an explicit formula for T_n^{-1} , and use that formula to describe $[T_n^{-1}]_{B,B}$, the matrix of T_n^{-1} relative to the basis B. (Justify your answers.)
- (c) Interpret the previous parts of this problem purely in terms of matrix multiplication. (Justify your answer.)

(cont. on other side)

- 3. Let $A = \begin{bmatrix} 14 & -18 \\ 9 & -\frac{23}{2} \end{bmatrix}$, and let $T = \mu_A$ be the usual linear function associated with A. Note that $B = \left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^2 . (This follows because neither vector is a scalar multiple of the other, making B linearly independent, and therefore a basis for \mathbb{R}^2 , by the Two out of Three Theorem.)
 - (a) Find $A' = [T]_{B,B}$, the matrix of T relative to the bases B and B.
 - (b) Express $A' = [T]_{B,B}$ in terms of the original matrix A.
 - (c) What happens to $(A')^n$ as $n \to \infty$?
 - (d) Find a vector $\mathbf{v} \in \mathbb{R}^2$ such that, for any $\begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$, $A^n \begin{bmatrix} x \\ y \end{bmatrix}$ becomes arbitrarily close to a scalar multiple of \mathbf{v} as $n \to \infty$.
- 4. Let $A = \begin{bmatrix} -8 & 20 & -10 \\ -5 & 12 & -5 \\ -5 & 10 & -3 \end{bmatrix}$. A calculation shows that the characteristic polynomial of

A is $(\lambda - 2)^2(\lambda + 3)$ (you may assume this). Find the eigenvalues of A, and for each eigenvalue of A, find a basis for the associated eigenspace.

5. Let $V = \mathbb{D}^{\infty}(\mathbb{R})$, the space of infinitely differentiable functions on \mathbb{R} , and let $\Delta : V \to V$ be the linear function defined by $\Delta(f) = f''$. Prove that every $\lambda \in \mathbb{R}$ is an eigenvalue of Δ .

Remark: In this context, Δ is often called the *Laplacian* on \mathbb{R} . The eigenvalues and eigenvectors (or in this context, *eigenfunctions*) of Δ play an important role in solving the equations governing heat, light, and sound, among other things.

6. Suppose that A is an $n \times n$ matrix such that $A^4 = I_n$. What are the possible eigenvalues of A? Prove your answer.