Math 129b, problem set 06 Outline due: Wed Mar 14 Due: Wed Mar 21 Last revision due: Wed Apr 18

Problems to be done, but not turned in: (6.2) 1, 5, 10, 15, 20; (6.6) 1, 5, 7.

Problems to be turned in:

- 1. (6.2) 12.
- 2. (6.2) 13.
- 3. Recall that \mathbb{P}_4 is the vector space of all polynomials of degree ≤ 4 ; in particular, an arbitrary element of \mathbb{P}_4 has the form $a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$ ($a_i \in \mathbb{R}$). Let $T : \mathbb{P}_4 \to \mathbb{P}_4$ be defined by the formula

$$T(p(x)) = p(x) - p(2)$$

for all $p(x) \in \mathbb{P}_4$.

- (a) Prove that T is linear.
- (b) Find a basis for ker T, a basis for im T, the rank of T, and the nullity of T.
- 4. Let $T: V \to W$ be linear. For $\mathbf{b} \in W$, let $S_{\mathbf{b}}$ be the solution set to the equation $T(\mathbf{x}) = \mathbf{b}$ (i.e., let $S_{\mathbf{b}} = \{\mathbf{x} \in V \mid T(\mathbf{x}) = \mathbf{b}\}$). Prove that if $\mathbf{x}_0 \in V$ is one solution to the equation $T(\mathbf{x}) = \mathbf{b}$, then

$$S_{\mathbf{b}} = x_0 + \ker T = \{ \mathbf{x}_0 + \mathbf{v} | \mathbf{v} \in \ker T \}.$$

(Make sure you do the set containment in both directions.)

5. Recall that \mathbb{P} is the vector space of all polynomials (of any degree). Define linear maps $D: \mathbb{P} \to \mathbb{P}$ and $I: \mathbb{P} \to \mathbb{P}$ by the formulas

$$D(p(x)) = p'(x),$$
 $I(p(x)) = \int_0^x p(t) dt.$

In other words, D is differentiation, and I is indefinite integration, choosing the constant C = 0.

- (a) Give as precise a description as possible of exactly which polynomials are in ker D and im D. (I.e., your description should let a reader know which polynomials are in ker D and im D without requiring the reader to do any computation.) Is D one-to-one? Is D onto?
- (b) Give as precise a description as possible of exactly which polynomials are in ker *I* and im *I*. Is *I* one-to-one? Is *I* onto?
- (c) Is $D \circ I = id_{\mathbb{P}}$? Is $I \circ D = id_{\mathbb{P}}$? Are D and I inverses?

(cont. on other side)

- 6. Let V be a finite-dimensional vector space, and let $T: V \to V$ be linear. Prove that exactly one of the following is true:
 - The equation $T(\mathbf{x}) = \mathbf{b}$ has a solution $\mathbf{x} \in V$ for all $\mathbf{b} \in V$.
 - $\operatorname{nullity}(T) > 0.$

(Aside: This theorem is known as the Fredholm Alternative.)