Math 129b, problem set 02 Outline due: Wed Feb 08 Due: Mon Feb 13 Last revision due: Mon Mar 12

Important terms and symbols:

restriction For X, Y sets, $f : X \to Y$, and $X' \subseteq X$, the *restriction* $f|_{X'}$ of f to X' is the function $f : X' \to Y$ defined by $f|_{X'}(x) = f(x)$ for all $x \in X'$. (I.e., same formula, smaller domain.)

Problems to be done, but not turned in: (1.7) 5, 8, 11; (1.8) 3, 5, 7, 11, 16, 19.

Problems to be turned in:

- 1. Let X be a set. Prove that $\mathbb{F}(X)$ satisfies axioms 3 and 4 of a vector space, being careful about the notation. (Suggestions: For axiom 3, you need to carefully define an appropriate function **0**. Similarly, for axiom 4, you need to define a function -f at an appropriate time.)
- 2. In both parts of this question, assume that $f, g \in C(\mathbb{R})$ (the set of all continuous real-valued functions on \mathbb{R}).
 - (a) Is it possible to find $f, g \in C(\mathbb{R})$ such that f(x) = g(x) for all x < 0 but $f \neq g$? Give an example or explain why not.
 - (b) Is it possible to find $f, g \in C(\mathbb{R})$ such that $f(7) \neq g(7)$ but f = g? Give an example or explain why not.
- 3. Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$. Let W be the set of all 3×2 matrices X such that AX = 0 (the

 3×2 zero matrix); in other words, let

$$W = \{ X \in \mathbb{M}(3,2) \mid AX = 0 \}.$$

Prove that W is a subspace of $\mathbb{M}(3,2)$.

4. Let W be the set of all continuous functions on the interval [0, 1] with integral 0; in other words, let

$$W = \left\{ f \in \mathbb{C}([0,1]) \mid \int_0^1 f(x) \, dx = 0 \right\}.$$

Is W a subspace of $\mathbb{C}([0,1])$? Prove or disprove.

5. Let W be the set of all 2×2 matrices with determinant 0; in other words, let

$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{M}(2,2) \mid ad - bc = 0 \right\}.$$

Is W a subspace of $\mathbb{M}(2,2)$? Prove or disprove.

(cont. on other side)

6. A *plane* in \mathbb{R}^3 is a subset of \mathbb{R}^3 of the form

$$S(a,b,c,d) = \left\{ (x,y,z) \in \mathbb{R}^3 \mid ax + by + cz = d \right\},\$$

where $a, b, c, d \in \mathbb{R}$, and at least one of a, b, c is $\neq 0$.

- (a) Find some $a, b, c, d \in \mathbb{R}$ such that S(a, b, c, d) is a subspace of \mathbb{R}^3 , and find some $a, b, c, d \in \mathbb{R}$ such that S(a, b, c, d) is not a subspace of \mathbb{R}^3 . (No proof necessary.)
- (b) Find and prove the best possible theorem of the form "For a fixed a, b, c, d, the plane S(a, b, c, d) defined above is a subspace of \mathbb{R}^3 if and only if (insert appropriate condition here)."