Math 129b, problem set 00 (review) Due: Mon Jan 30 Last revision due: Mon Feb 13

- 1. Compute $\left(\begin{bmatrix} -1 & 2 \\ 0 & 3 \end{bmatrix} + 2 \begin{bmatrix} 1 & 1 \\ -2 & -4 \end{bmatrix} \right)^T \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. 2. Let $A = \begin{bmatrix} 3 & -6 & -2 \\ 1 & -3 & 0 \\ -2 & 1 & 3 \end{bmatrix}$ and let $B = \begin{bmatrix} 1 & 0 \\ -5 & 7 \\ 0 & 3 \end{bmatrix}$.
 - (a) Choose either AB or BA, as long as the product you choose is defined, and compute its value. Show all your work.
 - (b) If A is invertible, compute A^{-1} ; if A is not invertible, explain how you know it is not invertible. Show all your work.
- 3. Find the general solution of the following system of linear equations, and put your final answer in vector form.

$$x_1 + x_2 + x_3 - x_4 = 0,$$

$$2x_2 - 2x_3 - 2x_4 = -6,$$

$$-2x_1 - x_2 - 3x_3 = -7.$$

4. Let A be a 3 × 4 matrix whose columns are \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 , and let $\mathbf{x} = \begin{vmatrix} w \\ x \\ y \\ z \end{vmatrix}$ be a

vector in \mathbb{R}^4 . In one sentence, describe the vector $A\mathbf{x}$ as completely as possible.

5. Given the following matrix A and the reduced row-echelon form of A:

	Γ1	$1 \ 3$	5	-12]		Γ1	0	2	0	1	
A =	2	$0 \ 4$	1	-1	$\operatorname{rref}(A) =$	0	1	1	0	2	
	3	-1 5	1	-2		0	0	0	1	-3	

- (a) Let V be the column space of A. Find a basis for V, and find the dimension of V. No explanation necessary, but show all your work.
- (b) Let W be the null space of A. Find a basis for W, and find the dimension of W. No explanation necessary, but show all your work.
- 6. Let A be a 4×4 matrix. Explain, in one sentence, what det A tells you about A^{-1} .

In questions 7–11, you are given a statement. If the statement is true, write "True". If the statement is false, write "False", and justify your answer as specifically as possible.

7. If
$$W = \operatorname{span}\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right\}$$
, then W contains exactly two vectors.

- 8. Let A, B, and C be 3×3 matrices. Then it is always the case that (AB)C = A(BC).
- 9. Let A and B be 3×3 matrices. Then it is always the case that AB = BA.
- 10. Let A, B, and C be 3×3 matrices. Then it is always the case that A(B + C) = AB + AC.
- 11. Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be vectors in \mathbb{R}^3 such that none of the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is a scalar multiple of another, i.e., $\mathbf{v}_1 \neq c\mathbf{v}_2$ for any $c \in \mathbb{R}$, $\mathbf{v}_1 \neq c\mathbf{v}_3$ for any $c \in \mathbb{R}$, and so on. Then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ must be linearly independent.