Review of span and linear independence Linear algebra (Math 129A)

Let $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$ be vectors in \mathbb{R}^n . The fundamental definitions are:

Definition. The *span* of $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is the set of all linear combinations of $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$. In other words, the span of $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is

$$\operatorname{Span} \{\mathbf{u}_1, \dots, \mathbf{u}_k\} = \{a_1 \mathbf{u}_1 + \dots + a_k \mathbf{u}_k \mid a_i \in \mathcal{R}\}.$$

Definition. If, for some $c_1, \ldots, c_k \in \mathcal{R}$ with not all $c_i = 0$, we have

$$c_1\mathbf{u}_1 + \dots + c_k\mathbf{u}_k = \mathbf{0},\tag{*}$$

then we say that $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is linearly dependent. If the only solution to (*) is $c_1 = \dots = c_k = 0$, then we say that $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ is linearly independent.

Which sets of vectors span \mathbb{R}^n /are linearly independent? Let $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$ be vectors in \mathbb{R}^n , and let A be the $n \times k$ matrix $[\mathbf{u}_1 \cdots \mathbf{u}_k]$, i.e., the matrix whose columns are $\mathbf{u}_1,\ldots,\mathbf{u}_k$. Among other things, the following theorems (Thms. 1.5 and 1.7, respectively) give tests for determining if $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$ spans \mathbb{R}^n and determining if $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$ is linearly independent. (Actually, these tests are really just a single test: finding the rank of A.)

Theorem (Fat Matrix Theorem). For an $n \times k$ matrix A, the following are equivalent:

- 1. The columns of A span \mathbb{R}^n .
- 2. For every $\mathbf{b} \in \mathbb{R}^n$, the equation $A\mathbf{x} = \mathbf{b}$ has either one solution or infinitely many solutions.
- 3. $\operatorname{rank}(A) = n$.
- 4. RREF(A) has no zero rows.

We call this the Fat Matrix Theorem because for the conditions to be true, we must have $k \ge n$ (i.e., the matrix A must be "fat").

Theorem (Tall Matrix Theorem). For an $n \times k$ matrix A, the following are equivalent:

- 1. The columns of A are linearly independent.
- 2. The only solution to $A\mathbf{x} = \mathbf{0}$ is $\mathbf{x} = \mathbf{0}$.
- 3. For every $\mathbf{b} \in \mathbb{R}^n$, the equation $A\mathbf{x} = \mathbf{b}$ has either no solutions or one solution.
- 4. $\operatorname{rank}(A) = k$.
- 5. Every column of RREF(A) is a pivot column.

We call this the Tall Matrix Theorem because for the conditions to be true, we must have $n \ge k$ (i.e., the matrix A must be "tall").

Enlarging or shrinking spanning sets. Here, we start to see how the ideas of span and linear independence complement each other.

Let $\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$ be vectors in \mathbb{R}^n . In Thm. 1.8, we see that:

Theorem. The vectors $\mathbf{u}_1, \dots, \mathbf{u}_k$ are linearly dependent precisely if one of the following conditions is true:

- 1. Either $\mathbf{u}_1 = \mathbf{0}$, or
- 2. Some \mathbf{u}_i ($2 \leq i \leq k$) is a linear combination of the previous vectors.

Combining this with part (c) of Thm. 1.6, we see that:

Theorem. Let S be a finite set of vectors in \mathbb{R}^n , and let $V = \operatorname{Span} S$. Then V can be spanned by a smaller subset of S if and only if S is linearly dependent.

Proof. If S is linearly dependent, then either some vector in S is equal to $\mathbf{0}$ or at least one vector $\mathbf{z} \in S$ is a linear combination of the others. By Thm. 1.6(c), we can remove \mathbf{z} from S and obtain a smaller set of vectors with the same span.

Conversely, suppose we can remove a vector \mathbf{z} from S and obtain a smaller set of vectors with the same span. In that case, by Thm. 1.6, \mathbf{z} is a linear combination of the other vectors in S, so by Thm. 1.8, S is linearly dependent.

The Span-Independence Theorem. Another key relationship between spanning and linear independence is Thm. 1.9, whose importance will become clearer later.

Theorem (Span-Independence Theorem). Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ be vectors in \mathbb{R}^n , and let $V = \operatorname{Span}\{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$. Every subset of V containing more than k vectors is linearly dependent.

In other words, put in terms of linear independence:

Theorem. Let V be a subset of \mathbb{R}^n . Any set $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$ that spans V is at least as large as any linearly independent subset $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ of V.

The point is, we do not assume that the \mathbf{v} 's have any direct relation to the \mathbf{w} 's (e.g., \mathbf{v}_1 need not be \mathbf{w}_1 , etc.), but we still know that there have to be more \mathbf{v} 's than \mathbf{w} 's.