Review of span and linear independence
Linear algebra (Math 129A)

Let {us,...,ux} be vectors in R™. The fundamental definitions are:

Definition. The span of {uy,...,u;} is the set of all linear combinations of {uy,...,u;}. In other
words, the span of {uy,...,ux} is

Span{uy,...,u;} = {aiu; +---+arug | a; € R}.

Definition. If, for some ¢y, ...,c; € R with not all ¢; = 0, we have

ciug + -+ + cpug = 0, *)
then we say that {uy,...,ux} is linearly dependent. If the only solution to (*) is¢; =---=¢; =0,
then we say that {uj,...,ui} is linearly independent.

Which sets of vectors span R"/are linearly independent? Let {u;,...,u;} be vectors in
R™, and let A be the n x k matrix [u; --- uy], i.e., the matrix whose columns are uy,...,u;. Among
other things, the following theorems (Thms. 1.5 and 1.7, respectively) give tests for determining if
{ui,...,u;} spans R"™ and determining if {uy,...,u;} is linearly independent. (Actually, these

tests are really just a single test: finding the rank of A.)
Theorem (Fat Matrix Theorem). For an n x k matriz A, the following are equivalent:

1. The columns of A span R"™.

2. For every b € R™, the equation Ax = b has either one solution or infinitely many solutions.
3. rank(A) = n.

4. RREF(A) has no zero rows.

We call this the Fat Matrix Theorem because for the conditions to be true, we must have k > n
(i.e., the matrix A must be “fat”).

Theorem (Tall Matrix Theorem). For an n x k matriz A, the following are equivalent:

The columns of A are linearly independent.

The only solution to Ax =0 is x = 0.

For every b € R"™, the equation Ax = b has either no solutions or one solution.
rank(4) = k.

Every column of RREF(A) is a pivot column.

G to do =

We call this the Tall Matrix Theorem because for the conditions to be true, we must have n > k
(i.e., the matrix A must be “tall”).

Enlarging or shrinking spanning sets. Here, we start to see how the ideas of span and linear
independence complement each other.

Let {uy,...,u;} be vectors in R™. In Thm. 1.8, we see that:

Theorem. The vectors uy,...,uy are linearly dependent precisely if one of the following conditions
18 true:

1. FEither u; =0, or
2. Someu; (2 <i<k)is a linear combination of the previous vectors.

Combining this with part (¢) of Thm. 1.6, we see that:



Theorem. Let S be a finite set of vectors in R™, and let V = SpanS. Then V can be spanned by
a smaller subset of S if and only if S is linearly dependent.

Proof. If S is linearly dependent, then either some vector in S is equal to 0 or at least one vector
z € S is a linear combination of the others. By Thm. 1.6(c), we can remove z from S and obtain a
smaller set of vectors with the same span.

Conversely, suppose we can remove a vector z from S and obtain a smaller set of vectors with
the same span. In that case, by Thm. 1.6, z is a linear combination of the other vectors in S, so by
Thm. 1.8, S is linearly dependent. (]

The Span-Independence Theorem. Another key relationship between spanning and linear
independence is Thm. 1.9, whose importance will become clearer later.

Theorem (Span-Independence Theorem). Let {uy,...,ur} be vectors in R™, and let V =
Span {uy,...,u;}. Every subset of V containing more than k vectors is linearly dependent.

In other words, put in terms of linear independence:

Theorem. Let V be a subset of R™. Any set {v1,...,V,;m} that spans V is at least as large as any
linearly independent subset {w1,...,wy} of V.

The point is, we do not assume that the v’s have any direct relation to the w’s (e.g., vi need
not be wy, etc.), but we still know that there have to be more v’s than w’s.



