Sample final, Spring 2002

- 1. Let $\mathbf{u}_1, \dots, \mathbf{u}_k$ be vectors in a subspace V of \mathbb{R}^n .
- (a) (10 points) Define what it means for $\mathbf{u}_1, \dots, \mathbf{u}_k$ to be linearly independent.
- (b) (10 points) Define what it means for $\mathbf{u}_1, \dots, \mathbf{u}_k$ to be a basis for V, and define the dimension of V.
- **2.** (14 points) Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ -3 & -4 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 0 & -5 \\ -1 & 0 \end{bmatrix}$.
- (a) Exactly one of the products AB, BA is defined. Calculate that product.
- (b) Calculate A^{-1} , if it exists, or explain how you know that it does not exist.
- 3. (14 points) Find the solution set to

$$2x_2 + 2x_4 = 4,$$

$$-x_1 - 2x_2 + x_3 = 2,$$

$$2x_1 + x_2 - 2x_3 = -1$$

If the system is consistent, put your final answer in vector form; if the system is not consistent, explain how you know that the system is not consistent.

4. (20 points) Let

$$A = egin{bmatrix} 1 & 2 & -4 & 1 & 0 \ 0 & 1 & -3 & 1 & 1 \ 3 & 2 & 0 & 0 & -3 \ -1 & 1 & -5 & 1 & 2 \ \end{bmatrix}, \qquad \qquad \operatorname{rref}(A) = egin{bmatrix} 1 & 0 & 2 & 0 & -1 \ 0 & 1 & -3 & 0 & 0 \ 0 & 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 0 & 0 \ \end{bmatrix}.$$

- (a) Find a basis for the column space of A.
- (b) Find the dimension of the nullspace of A.
- (c) Find **one** specific nonzero vector \mathbf{x} such that $A\mathbf{x} = \mathbf{0}$.

Show all your work, and in each part this question, briefly **EXPLAIN** (in a phrase or sentence) how your answer was obtained.

5. (14 points) Let
$$W = \operatorname{Span} \left\{ \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\-2\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0\\2 \end{bmatrix} \right\}$$
. Find an orthogonal basis for W .

Show all your work.

6. (20 points) Let $A = \begin{bmatrix} -1 & -3 & -6 \\ -6 & -4 & -12 \\ 3 & 3 & 8 \end{bmatrix}$. A computation shows that the characteristic

polynomial of A is $-(t+1)(t-2)^2$. (This is given; do not spend time checking it.)

Determine if A is diagonalizable. If A is diagonalizable, find a diagonal matrix D and an invertible matrix P such that $A = PDP^{-1}$; if A is not diagonalizable, explain how you know that A is not diagonalizable.

- 7. (T/F) (8 points) Let A be a 4×4 matrix such that 3 is an eigenvalue of A. It is possible that the nullspace of $(A 3I_4)$ is the zero subspace.
- **8.** (T/F) (8 points) Let V be a 2-dimensional subspace of \mathcal{R}^4 , and let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ be nonzero vectors in V. Then $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ must be linearly independent.
- **9.** (T/F) (8 points) There exist 3×3 matrices A and B such that det A = 2, det B = -4, and AB is not invertible.
- 10. (T/F) (8 points) Let W be a nonzero subspace of \mathcal{R}^5 . If \mathbf{v} is a vector in \mathcal{R}^5 , and $\mathbf{v} = \mathbf{x} + \mathbf{y}$, where $\mathbf{x} \in W$ and $\mathbf{y} \in W^{\perp}$, then \mathbf{x} is the vector of W that is closest to \mathbf{v} .
- 11. (T/F) (8 points) If \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are vectors in \mathcal{R}^4 , and W is the set of all linear combinations of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , then W must be a subspace of \mathcal{R}^4 .
- **12.** (T/F) (8 points) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation, let **b** be a vector in \mathbb{R}^2 , and let W be the set of all $\mathbf{x} \in \mathbb{R}^3$ such that $T(\mathbf{x}) = \mathbf{b}$, i.e., $W = \{\mathbf{x} \in \mathbb{R}^3 \mid T(\mathbf{x}) = \mathbf{b}\}$. Then W must be a subspace of \mathbb{R}^3 .
- **13.** (T/F) (8 points) Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, and let B be an invertible 2×2 matrix. Then it must be true that AB = BA.
- **14.** (T/F) (8 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^4$ be a linear transformation such that $T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$

and
$$T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\-3\\5\\0\end{bmatrix}$$
. It is possible that $T(\mathbf{x}) = \begin{bmatrix}1\\1\\1\\1\end{bmatrix}$ for some $x \in \mathcal{R}^2$.

- **15.** Let A be a 5×7 matrix, and let **b** be a vector in \mathbb{R}^5 .
- (a) (8 points) Is it possible that rank A=6? Give an example of such an A, or explain why no such A can exist.
- (b) (8 points) Is it possible that the equation $A\mathbf{x} = \mathbf{b}$ has **exactly one** (i.e., at least one, and not more than one) solution $\mathbf{x} \in \mathcal{R}^7$? Give an example of such an A, or explain why no such A can exist.
- **16.** Suppose that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ spans a subspace V of \mathcal{R}^4 .
- (a) (9 points) Let \mathbf{y} be a vector in V. Must it be true that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{y}\}$ spans V? Either:
 - Explain why $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{y}\}$ must span V; or
 - Give a specific example of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{y}\}$ satisfying the above conditions, and explain how you know that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{y}\}$ does not span V in your example.
- (b) (9 points) Must it be true that $\{\mathbf{u}_1, \mathbf{u}_2\}$ spans V? Eiither:
 - Explain why $\{\mathbf{u}_1, \mathbf{u}_2\}$ must span V; or
 - Give a specific example of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ satisfying the above conditions, and explain how you know that $\{\mathbf{u}_1, \mathbf{u}_2\}$ does not span V in your example.