Sample exam 2, Spring 2002 - 1. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a function. - (a) (8 points) Define what it means for T to be linear (that is, define what it means for T to be a linear transformation). - (b) (6 points) Define what it means for T to be onto. - **2.** (14 points) Let $A = \begin{bmatrix} 1 & 0 & 4 \\ 2 & 1 & 8 \\ -1 & 0 & -3 \end{bmatrix}$, and let $B = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 1 & 2 \end{bmatrix}$. If A is invertible, compute A^{-1} , and verify, by direct computation, that $AA^{-1} = I_3$. If A is not invertible, explain how you know that A is not invertible, and compute AB. Either way, show all your work. **3.** (18 points) Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5, \mathbf{u}_6$ be vectors in \mathbb{R}^4 , and let A be the 4×6 matrix whose columns are $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5, \mathbf{u}_6$. Furthermore, suppose that $$\operatorname{rref}(A) = egin{bmatrix} 1 & -2 & 0 & 0 & 1 & 4 \ 0 & 0 & 1 & 0 & -3 & 3 \ 0 & 0 & 0 & 1 & 0 & -2 \ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$ - (a) Does $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5, \mathbf{u}_6\}$ span \mathcal{R}^4 ? Briefly **JUSTIFY** your answer. - (b) Is {u₁, u₂, u₃, u₄, u₅, u₆} linearly independent? If yes, briefly EXPLAIN why. If no, briefly **EXPLAIN** why not, and express one of the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5, \mathbf{u}_6$ as a linear combination of the others. - **4.** (8 points) (T/F) Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ be vectors in \mathbb{R}^7 . It is possible that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^7 . - **5.** (8 points) (T/F) Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ be vectors in \mathbb{R}^2 such that $\mathbf{u}_1 \neq \mathbf{u}_2, \mathbf{u}_1 \neq \mathbf{u}_3, \mathbf{u}_2 \neq \mathbf{u}_3$. Then $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ must span \mathbb{R}^2 . - **6.** (8 points) (T/F) If A and B are 2×2 matrices, then AB = BA. - 7. (8 points) (T/F) Let A be a 4×4 matrix. If A is invertible, then A is the product of 4×4 elementary matrices. - **8.** (8 points) (T/F) Let A be a 3×3 invertible matrix. It is possible that there exists a 3×3 matrix $B \neq \mathbf{0}$ such that $BA = \mathbf{0}$. (In both instances, $\mathbf{0}$ is the 3×3 zero matrix.) The last question on this exam was a proof; there will be no proofs in our exam.