Sample exam 2, Spring 2002

- 1. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a function.
- (a) (8 points) Define what it means for T to be linear (that is, define what it means for T to be a linear transformation).
- (b) (6 points) Define what it means for T to be onto.
- **2.** (14 points) Let $A = \begin{bmatrix} 1 & 0 & 4 \\ 2 & 1 & 8 \\ -1 & 0 & -3 \end{bmatrix}$, and let $B = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 1 & 2 \end{bmatrix}$.

If A is invertible, compute A^{-1} , and verify, by direct computation, that $AA^{-1} = I_3$. If A is not invertible, explain how you know that A is not invertible, and compute AB. Either way, show all your work.

3. (18 points) Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5, \mathbf{u}_6$ be vectors in \mathbb{R}^4 , and let A be the 4×6 matrix whose columns are $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5, \mathbf{u}_6$. Furthermore, suppose that

$$\operatorname{rref}(A) = egin{bmatrix} 1 & -2 & 0 & 0 & 1 & 4 \ 0 & 0 & 1 & 0 & -3 & 3 \ 0 & 0 & 0 & 1 & 0 & -2 \ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

- (a) Does $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5, \mathbf{u}_6\}$ span \mathcal{R}^4 ? Briefly **JUSTIFY** your answer.
- (b) Is {u₁, u₂, u₃, u₄, u₅, u₆} linearly independent?
 If yes, briefly EXPLAIN why.

If no, briefly **EXPLAIN** why not, and express one of the vectors $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4, \mathbf{u}_5, \mathbf{u}_6$ as a linear combination of the others.

- **4.** (8 points) (T/F) Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4$ be vectors in \mathbb{R}^7 . It is possible that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ spans \mathbb{R}^7 .
- **5.** (8 points) (T/F) Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ be vectors in \mathbb{R}^2 such that $\mathbf{u}_1 \neq \mathbf{u}_2, \mathbf{u}_1 \neq \mathbf{u}_3, \mathbf{u}_2 \neq \mathbf{u}_3$. Then $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ must span \mathbb{R}^2 .
- **6.** (8 points) (T/F) If A and B are 2×2 matrices, then AB = BA.
- 7. (8 points) (T/F) Let A be a 4×4 matrix. If A is invertible, then A is the product of 4×4 elementary matrices.
- **8.** (8 points) (T/F) Let A be a 3×3 invertible matrix. It is possible that there exists a 3×3 matrix $B \neq \mathbf{0}$ such that $BA = \mathbf{0}$. (In both instances, $\mathbf{0}$ is the 3×3 zero matrix.)

The last question on this exam was a proof; there will be no proofs in our exam.