## Math 129a, paragraph homework 04 Linear dependence and independence Due: Fri Feb 22

1. Consider the following homogenous (see p. 72) system of linear equations in six variables:

$$\begin{bmatrix} 1 & 0 & -2 & 0 & 1 & -4 & 0 \\ 0 & 1 & 3 & 0 & -7 & 6 & 0 \\ 0 & 0 & 0 & 1 & 5 & -11 & 0 \end{bmatrix}$$

Note that this system is in RREF.

- (a) Write down the general solution to this system in vector form. (This is also known as the parametric representation of the general solution to the system; see p. 73.)
- (b) Note that the vector form of the general solution expresses the solution set as the span of three vectors. **Explain** why these three vectors are linearly independent, without doing any computations (i.e., just using the definition of linear independence).
- 2. Suppose that  $\mathbf{u}$ ,  $\mathbf{v}$ ,  $\mathbf{w}$ , and  $\mathbf{x}$  are vectors in  $\mathcal{R}^5$  such that  $2\mathbf{u} + \mathbf{v} 7\mathbf{w} + 6\mathbf{x} = \mathbf{0}$ . Nothing else is known about  $\mathbf{u}$ ,  $\mathbf{v}$ ,  $\mathbf{w}$ , and  $\mathbf{x}$ .
  - (a) **Must** it be true that  $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$  is linearly dependent? If yes, carefully **explain** why, using the definition of linear dependence; if no, give one example of vectors  $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x} \in \mathcal{R}^5$  such that  $2\mathbf{u} + \mathbf{v} 7\mathbf{w} + 6\mathbf{x} = \mathbf{0}$  and  $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$  is linearly independent.
  - (b) Now let  $\mathbf{y}$  be another vector in  $\mathcal{R}^5$ . Must it be true that  $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}\}$  is linearly dependent? If yes, carefully **explain** why, using the definition of linear dependence; if no, give one example of vectors  $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y} \in \mathcal{R}^5$  such that  $2\mathbf{u} + \mathbf{v} 7\mathbf{w} + 6\mathbf{x} = \mathbf{0}$  and  $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}\}$  is linearly *in*dependent.