Math 128B, problem set 09 CORRECTED MON APR 26 Outline due: Fri Apr 23 Due: Wed Apr 28 Last revision due: Mon May 17

Problems to be done, but not turned in: (Ch. 22) 1–49 odd; (Ch. 23) 1–21 odd.

Problems to be turned in:

- 1. Let $E = \mathbf{Z}_2(\alpha)$, where α is a root of $x^4 + x^3 + 1$ (i.e., $\alpha^4 + \alpha^3 + 1 = 0$).
 - (a) What are the possible orders of elements of E^* ?
 - (b) Find a primitive element $\beta \in E^*$, where β is a polynomial in α of degree ≤ 3 .
 - (c) Make a table of all elements of E^* , with each row corresponding to an element $\gamma \in E^*$, containing the following information:
 - In the first column, describe γ as a polynomial in α of degree ≤ 3 .
 - In the second column, describe γ as a power of β .
 - In the third column, write the order of γ .
- 2. Draw the subfield lattices of $GF(7^{105})$ and $GF(11^{50})$.
- 3. Let $f(x) \in \mathbf{Z}_5[x]$ be a cubic polynomial that is irreducible over \mathbf{Z}_5 , and let $E = \mathbf{Z}_5[x]/\langle f(x) \rangle$. Suppose we have $a \in E^*$ such that a is **not** a zero of $x^5 x$.
 - (a) Prove that $E = \mathbf{Z}_5(a)$.
 - (b) What are all possible orders of a as an element of E^* ? Prove your answer.
- 4. Let *E* be a finite field of characteristic 2. For this problem, you may assume that the map $\rho: E \to E$ defined by $\rho(x) = x^2$ is an automorphism of *E*.
 - (a) Prove that $\rho(x) = x$ if and only if $x \in \mathbb{Z}_2$ (i.e., if and only if x = 0, 1).
 - (b) Suppose $f(x) \in \mathbb{Z}_2[x]$, $\alpha \in E$, and $f(\alpha) = 0$. Prove that $f(\rho(\alpha)) = 0$.
 - (c) Let $E = \mathbf{Z}_2(\alpha)$, where α is a root of the irreducible polynomial $x^5 + x^2 + 1 \in \mathbf{Z}_2[x]$. Use ρ to factor $x^5 + x^2 + 1$ into linear factors over E.
- 5. Let p be prime and $e \ge 1$.
 - (a) Let $m(x) \in \mathbf{Z}_p[x]$ be irreducible of degree d, where d divides e. Use the field $\mathbf{Z}_p[x]/\langle m(x) \rangle$ to prove that m(x) divides $x^{p^d} x$, and therefore, that m(x) divides $x^{p^e} x$.
 - (b) Conversely, suppose $m(x) \in \mathbf{Z}_p[x]$ is irreducible over \mathbf{Z}_p , m(x) divides $x^{p^e} x$ in $\mathbf{Z}_p[x]$, and $d = \deg m(x)$. Prove that there exists some $\alpha \in GF(p^e)$ such that $m(\alpha) = 0$, and use $\mathbf{Z}_p(\alpha)$ to prove that d divides e.
- 6. Suppose α is a positive real root of $x^5 27x + 12$. Prove that α is not constructible (in the sense of Ch. 23).