Math 128B, problem set 08 Outline due: Thu Apr 15 REVISED FRI APR 16 Due: Mon Apr 18 Last revision due: Mon May 17

Problems to be done, but not turned in: (Ch. 21) 1–49 odd.

- 1. Prove that if a is algebraic over $F, b \in F$, and $b \neq 0$, then $\frac{a}{b}$ is algebraic over F.
- 2. Let *E* be the splitting field of $x^3 11$ over **Q**. Find three distinct proper subfields of *E*, and draw the corresponding tower of subfields, with degrees, as in Example 4 of Ch. 21. (No proof necessary.)
- 3. Let $\alpha = \sqrt{5} \sqrt{2}$. Find the minimal polynomial of α over \mathbf{Q} , find $[\mathbf{Q}(\alpha):\mathbf{Q}]$, and find a basis for $\mathbf{Q}(\alpha)$ over $\mathbf{Q}(\sqrt{10})$ (all with proof/justification).
- 4. Suppose F is a field, a is an element of some extension of F, and [F(a):F] = 7.
 - (a) Prove that $F(a^3) = F(a)$.
 - (b) Is it necessarily true that $F(a^4) = F(a)$? Generalize.
- 5. Let $a = \sqrt{2} + \sqrt{3}$ and $b = \sqrt{3} + \sqrt{5}$. (See also Ch. 21, problem 15.)
 - (a) Find at least 9 distinct proper subfields of $E = \mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$, including:
 - At least 4 subfields K of E such that $[K:\mathbf{Q}] = 4$; and
 - At least 4 subfields K of E such that $[K:\mathbf{Q}] = 2$;

and draw the corresponding tower of subfields, with degrees, as in Example 4 of Ch. 21.

- (b) Indicate where $\mathbf{Q}(a)$ and $\mathbf{Q}(b)$ fit into the tower of fields from part (a).
- (c) Prove that $[\mathbf{Q}(a,b):\mathbf{Q}] < [\mathbf{Q}(a):\mathbf{Q}][\mathbf{Q}(b):\mathbf{Q}].$
- 6. (Ch. 21) 24.
- 7. (Ch. 21) 34.