Math 128B, problem set 07 Outline due: Fri Apr 09 Due: Mon Apr 12

Last revision due: Mon May 10

Problems to be done, but not turned in: (Ch. 20) 1-43 odd.

Problems to be turned in:

- 1. Find the splitting field of $f(x) = x^4 4x^2 5$ over **Q**. Prove your answer, and state your answer in the form $\mathbf{Q}(a,b)$ or $\mathbf{Q}(a)$.
- 2. Find the splitting field of $x^6 + 1$ over \mathbf{Q} . Prove your answer, and state your answer in the form $\mathbf{Q}(a,b)$ or $\mathbf{Q}(a)$. You may find it helpful to use complex numbers of the form $\omega = e^{2\pi i/n}$; note that for such a complex number, $\omega^n = 1$.
- 3. Let α be a root of $f(x) = x^3 + x^2 + 1$ in the field $\mathbf{Z}_2[x]/\langle f(x) \rangle$. Write out a multiplication table for $\mathbf{Z}_2(\alpha)$. (In particular, express all of the elements of $\mathbf{Z}_2(\alpha)$ in terms of α .)
- 4. (Ch. 20) 12. (Do 11 first.)
- 5. Let E be an extension field of \mathbb{Z}_2 .
 - (a) Prove that if $f(x) \in \mathbf{Z}_2[x]$, $\beta \in E$, and $f(\beta) = 0$, then $f(\beta^2) = 0$. (Suggestion: Use the field automorphism $\rho : E \to E$ given by $\rho(x) = x^2$.)
 - (b) Now suppose α is a root of $f(x) = x^4 + x^3 + 1$ in E. Factor f(x) into linear factors over E.
- 6. Find a basis for $\mathbf{Q}(\sqrt[6]{2})$ as an extension of $\mathbf{Q}(\sqrt{2})$. Prove your answer.
- 7. (Ch. 20) 36.