Math 128B, problem set 04 Outline due: Wed Mar 03 Due: Mon Mar 08 Last revision due: Mon Apr 05

Problems to be done, but not turned in: (Ch. 16) 1–61 odd. (Ch. 17) 1–19 odd.

Problems to be turned in:

Throughout this problem set, you may assume the (as yet unproven) fact that if F is a field, then polynomials in F[x] factor uniquely into irreducible polynomials.

- 1. Let F be a field, let R be a commutative ring with unity, and suppose that $\varphi : F \to R$ is a ring homomorphism with $\varphi(1) = 1$. Prove that φ is injective.
- 2. Let F be a field. Fill in the blank and prove: For any positive integer n, there are at most ______ elements of F that are equal to their nth powers.
- 3. Let F be a subfield of C. (Note that Z must therefore be a subring of F.)
 - (a) Find a cubic polynomial $f(x) \in F[x]$ such that f(2) = 0, f(3) = 0, f(4) = 0, and f(5) = 17. Your formula should express f as a product of linear polynomials.
 - (b) Find a cubic polynomial $g(x) \in F[x]$ such that g(2) = 0, g(3) = -31, g(4) = 0, and g(5) = 17. Your formula should express g as the sum of two polynomials of the form used in part (a).
 - (c) Let a_i $(1 \le i \le 4)$ be distinct elements of F, and let b_i $(1 \le i \le 4)$ be elements of F, not necessarily distinct. Prove that there exists a **unique** cubic polynomial h(x) such that $h(a_i) = b_i$ for $1 \le i \le 4$.
- 4. (Ch. 16) 48.
- 5. (Ch. 17) 20.
- 6. Explain your answers in each part.
 - (a) (Ch. 17) 24(a).
 - (b) Determine the number of polynomials of the form $(x a)(x^2 + bx + c)$ in $\mathbf{Z}_p[x]$, where $x^2 + bx + c$ is irreducible.
 - (c) Determine the number of polynomials of the form (x-a)(x-b)(x-c) in $\mathbf{Z}_p[x]$. (Watch out for repetitions!)
 - (d) Determine the number of irreducible polynomials over \mathbf{Z}_p of the form $x^3 + ax^2 + bx + c$.