
The Minimal Polynomial Theorem

Lemma. Let E be an extension of a field F and a ∈ E. Suppose m(x), f(x) ∈ F [x], m(x)
is irreducible over F , m(a) = 0, and f(a) = 0. Then m(x) must divide f(x).

Proof. If m(x) does not divide f(x), since m(x) is irreducible, the GCD of m(x) and f(x)
must be 1, which implies that there exist polynomials g(x), h(x) ∈ F [x] such that

g(x)f(x) + h(x)m(x) = 1. (1)

Plugging in x = a, we see that 0 = 1; contradiction.

Theorem (The Minimal Polynomial Theorem). Let E be an extension of a field F , let
a ∈ E be algebraic over F , and suppose m(x) ∈ F [x] is monic.

Then the following are equivalent:

1. m(x) is irreducible over F and m(a) = 0.

2. m(x) is a nonzero polynomial of smallest possible degree such that m(a) = 0.

3. For n = degm(x),
{

1, a, . . . , an−1
}

is a basis for F (a) as a vector space over F and
m(a) = 0.

4. [F (a) :F ] = degm(x) and m(a) = 0.

5. F (a) ≈ F [x]/〈m(x)〉 and m(a) = 0.

Furthermore, if any (and therefore all) of the above conditions hold, then for any f(x) ∈ F [x]
such that f(a) = 0, we have that m(x) divides f(x) in F [x].

If any (and therefore all) of the equivalent conditions in the Theorem hold, we call m(x)
the minimal polynomial of a over F . Note that the requirement that m(x) be monic is
just so we can call m(x) “the” minimal polynomial of a; more generally, a polynomial has
properties (1)–(5) if and only if it is a nonzero scalar multiple of the minimal polynomial.

Proof. (1) ⇒ (2): Suppose m(x) is irreducible over F , f(x) ∈ F [x], deg f(x) < degm(x),
and f(a) = 0. By the Lemma, m(x) divides f(x), and since deg f(x) < degm(x), we must
have f(x) = 0.

(2) ⇒ (3): Suppose m(x) = xn + cn−1x
n−1 + · · ·+ c0. Since m(a) = 0, we have that

an = −cn−1a
n−1 − · · · − c0, (2)

which means that any polynomial in a of degree ≥ n can be reduced to a polynomial in a
of degree < n. In other words, the set

{
1, a, . . . , an−1

}
spans F (a) as a vector space over

F .
On the other hand, suppose that for some bi ∈ F , we have that

bn−1a
n−1 + · · ·+ b1a + b0 = 0. (3)

In that case, g(x) = bn−1x
n−1 + · · · + b1x + b0 is a polynomial of degree strictly less than

n such that g(a) = 0. However, since the smallest possible degree of a nonzero polynomial



that has a as a zero is degm(x) = n, we must have that g(x) = 0, or in other words, that
each of the bi = 0. It follows that

{
1, a, . . . , an−1

}
is linearly independent, and therefore,

that
{

1, a, . . . , an−1
}

is a basis for F (a) as a vector space over F .
(3) ⇒ (4): By definition, [F (a) :F ] is the dimension of F (a) as a vector space over F ,

which is equal to the number of vectors in any basis.
(4) ⇒ (5): Suppose [F (a) :F ] = degm(x) = n, and let I be the principal ideal 〈m(x)〉

of F [x]. Define a map ϕ : F [x]/I → F (a) by the formula

ϕ(f(x) + I) = f(a). (4)

Note that ϕ is well-defined because if g is another representative of the coset f(x) + I, we
have that g(x) = f(x) + q(x)m(x) for some q(x) ∈ F [x], which means that

g(a) = f(a) + q(a)m(a) = f(a). (5)

Since substitution is a homomorphism, it also follows that ϕ is a homomorphism.
So now suppose f(x) + I ∈ kerϕ, where f(x) ∈ F [x] is a polynomial of degree < n. In

that case, since f(a) = 0 and
{

1, a, . . . , an−1
}

is linearly independent, we must have that
f(x) = 0, which means that ϕ is one-to-one. Furthermore, since

{
1, a, . . . , an−1

}
spans

F (a), ϕ is onto, and so F (a) ≈ F [x]/〈m(x)〉.
(5) ⇒ (1): Since F (a) is a field and F (a) ≈ F [x]/〈m(x)〉, m(x) must be irreducible.
Finally, suppose conditions (1)–(5) all hold. In that case, if f(x) ∈ F [x] and f(a) = 0,

by the Lemma, m(x) must divide f(x). The theorem follows.


