Math 128B, Wed May 05

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: Review Chs. 1, 4, 5, 7, 9, 10. (S_n , A_n , D_n , $C_n \approx \mathbf{Z}_n$); new reading pp. 387–388. Reading for next Mon: Ch. 32.

イロト 不得 トイヨト イヨト

PS10 outline due Fri May 07.

C. b/c mult

C_n is my notation for the multiplicative cyclic group of order n.

 $C_n = \langle a \rangle$, where a has order n.

 F^* is the group of nonzero elements of field F, aka multiplicative group of F, which is cyclic if F finite.

 $GF(p^e)$ is the finite field of order p^e, p prime, e >= 1. $GF(p^e)^*$ is cyclic of order p^e-1 (b/c $GF(p^e)$ has p^e-1 nonzero elements).

```
So GF(p^e)^* isom to C_{p^e-1}.
```

Z_4 = integers mod 4 under addition 1, 3 generate Z_4; 0, 2 don't.

C_4 = cyclic group of order 4, operation multiplication, generated by some a with order 4 (so $a^4 = e$). a will not usually be an integer. a^1 , a^3 generate C_4; $a^0=e$, a^2 don't.

C_{10} = cyclic of order 10, operation mult. a^2, a^4, a^6, a^8, a^5, a^0=e don't generate C_{10} all other elements (a^1, a^3, a^7, a^9) of C_{10} generate C_{10}. Recap: Conjugacy and the cycle-shape theorem

Note: Conjugacy is an equivlance relation, so ccs are
equivalence classes under conjugacy.G a group. To say that $a \in G$ is conjugate to $b \in G$ means that
there exists some $g \in G$ such that $gag^{-1} = b$. The conjugacy
class of $a \in G$ is the set of all elements of G conjugate to a, i.e.,

$$\left\{ \mathsf{gag}^{-1} \mid \mathsf{g} \in \mathsf{G}
ight\}$$
 .

Theorem (Cycle-shape)

For $\alpha, \sigma \in S_n$, let $\beta = \sigma \alpha \sigma^{-1}$. Then β has the same cycle-shape as α , except renumbered by σ ; that is, conjugation by σ turns each cycle of α of the form (a b c ... z) to a cycle of the form ($\sigma(a) \sigma(b) \sigma(c) \ldots \sigma(z)$). Conversely, for $\alpha, \beta \in S_n$ with the same cycle-shape, there exists some $\sigma \in S_n$ such that $\beta = \sigma \alpha \sigma^{-1}$.

To review why normal subgroups are important/useful and what conjugacy has to do with a subgroup being normal: See Ch. 9.

Q: Is there a group G such that all non-identity elements are conjugate? Silly answer: C_2. Non-silly answer: Yes, but G is infinite and is constructed in a fancy recursive (IIRC).

 D_4 , C_4 , and $V \approx C_2 \oplus C_2$ (Chs. 1, 4) $\mathcal{D}_{4} = \{ e_{(1234), (13)(24), 3}^{2} \}$ notins (1432), (24),(13),(12)(34),(14)(23) $C_{4} = \int_{4} \int_{2} \int_{3} \int_{4} \int_$

Recall: Every group of order 4 is isomorphic either to C_4 or $C_2 \times C_2$ (Gallian Ch. 8, though really in Ch. 7).

More generally: Every group of order 2p, where p is prime, is isomorphic either to C_{2p} or D_p (symmetries of regular p-gon).

Fact St, A., Dy, Cy, V are, transitive perm gps on 4 objects. Ex V transitive b/c: e1 -> 1 (2)(34)(1-7) $(\mathbb{R})(24) \rightarrow \overline{3}$ $((4)(23)^{1} \rightarrow 4$

$S_3 \approx D_3$ (Chs. 1, 5) and $C_3 \approx A_3$ (Chs. 4, 5)

Shapes of elements, numbers of elements of each type.

 $S_{2} = \{ e, (ab), (ab), (ab) \}$ ={e,(12),(13,(27),(12)),(132)} $A_{=} \{ e_{(123)}, (132) \} \approx C_{1}$

Important subtlety: (1 2 3) and (1 3 2) are conjugate in S_3, but they are *not* conjugate in A_3.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(23)(123)=(geSz, hot in Az

On the other hand, A_3 is abelian, and in an abelian group, every element is conjugate only to itself.

(123)(132) Subgroups of A_4 (124)(142) 9,1 Recall: $|A_4| = 12$, elements are: (ab) (ca) (234) (243) a, a2 2+2e ~ (12)(34) (13)(24) (14) (23) Cyclic subgroups: Order 2: ((12) (54)) < (15) (24) > < (14) (23) $(1231)_{(1241)}_{(1341)}_{(1341)}_{(1341)}$

1,2,3,4,4,12 Subgroups of A_4 , cont. Subgroups of orders 4 and 6? ord 4! Visonly poss. No ord 6'If 7 Hsordor 2) eg. (123), (12) (34) (on; (12)(34) (23) (23)(14) $51 V \leq 510 20, 50 4 Aiv |H|$ =)H=H+ ・ロト・日本・日本・日本・日本・日本

The Orbit-Stabilizer Theorem and conjugacy (for example, by conjugation). Suppose G permutes a set S. For $i \in S$, define stabilizer of i in G: stab_G(i) = { $\alpha \in G \mid \alpha(i) = i$ }, G is a

orbit of i under G:

G is a group permuting its own elements by conjugation.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 目 ト

Theorem (Orbit-Stabilizer) 4, 7For $i \in S$, $|G| = |orb_G(i)| |stab_G(i)|$. **Exmp.** S_5 permuting the conjugacy classes of $(\frac{12}{34})$, (123), (12345): $5 e(+s(n_0)(-c_0))$, $(s_5) = 5 = 20$

 $\operatorname{orb}_{G}(i) = \{ \alpha(i) \mid \alpha \in G \}.$

 $|Stab_{s}((ab)(cd))| = \frac{120}{15} = 8$

Soi. Stab of (15/24) under Couj has arder 8 Turns oht! $stab_{ss}((13)(24)) = D_4 +$ $\begin{bmatrix} 1 & 7 \\ 2 & 3 \end{bmatrix}$ Cent, (13)(24))

The conjugacy classes of A_5

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Normal subgroups and simple groups

Definition

Let $H \leq G$. To say that H is **normal** means that for any $a \in H$ and $g \in G$, we have that $gag^{-1} \in H$. (Note that even if $gag^{-1} \in H$, it need not be the case that $gag^{-1} = a$.) In that case, we write $H \lhd G$.

Note that a subgroup $H \lhd G$ exactly when H is a union of conjugacy classes.

Definition

To say that a group G is **simple** means that the only normal subgroups of G are $\{e\}$ and G.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A_5 is simple

- < ロ > ・ 目 > ・ 目 > ・ 目 - の へ ()・