Math 128B, Wed Apr 28

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- ▶ Reading for today and next week: Review Chs. 1, 4, 5, 7, 9, 10. (*S_n*, *A_n*, *D_n*, *C_n* ≈ Z_n); new reading pp. 387–388.
- ▶ PS09 due tonight. γV

Or by next week: Class notes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Exam 3, Mon May 03.
- Exam review Fri Apr 30, 10am-noon.

128B: Probably 11-noon

The Minimal Polynomial Theorem

Let *E* be an extension of a field *F*, let $a \in E$ be algebraic over *F*, and suppose $m(x) \in F[x]$ is monic. Then the following are equivalent:

- 1. m(x) is irreducible over F and m(a) = 0.
- 2. m(x) is a nonzero polynomial of smallest possible degree such that m(a) = 0.
- 3. $[F(a):F] = \deg m(x) \text{ and } m(a) = 0.$
- 4. $F(a) \approx F[x]/\langle m(x) \rangle$ and m(a) = 0.

Furthermore, if any (and therefore all) of the above conditions hold, then for any $f(x) \in F[x]$ such that f(a) = 0, we have that m(x) divides f(x) in F[x].

m 21.3

Review (Ch. 5): Permutation groups

Definition

 S_n is the group of all permutations on *n* objects.

 A_n is the subgroup of S_n consisting of all **even** permutations on *n*

objects. (Cycles of odd length are even perms, and vice versa.)

A **permutation group** on *n* objects is a subgroup of S_n .

Definition

To say that a permutation group G on n objects is **transitive** means that for any $a, b \in \{1, ..., n\}$, there is some $\alpha \in G$ such that $\alpha(a) = b$. ("You can always get here from there.")

To prove that the quintic is unsolvable:

- Need to understand transitive permutation groups on 4 and 5 objects. also 2 and 3 but those are less complicated
- Need to understand all subgroups of those groups, especially normal vs. non-normal subgroups.

Conjugacy (Ch. 24, new)

Definition

G a group. To say that $a \in G$ is **conjugate** to $b \in G$ means that there exists some $g \in G$ such that $gag^{-1} = b$. The **conjugacy class** of $a \in G$ is the set of all elements of *G* conjugate to *a*, i.e.,

$$\left\{ \mathsf{gag}^{-1} \mid \mathsf{g} \in \mathsf{G}
ight\}$$
 .

Note that a subgroup is **normal** exactly when it is also closed under conjugacy.

Example: $a \in S_6$, random examples of $g \in S_6$:

J=(123) x=(15436) 5-14.6 915":(121)(15436)(132) =(16254) 5-cycle

 $5 = \begin{pmatrix} 1 & 2 & 3 & 4 & 4 \\ 1 & 6 & 5 & 2 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 5 & 6 & 4 & 2 \\ 1 & 6 & 5 & 2 & 4 & 2 \end{pmatrix}$ = (26)(354) = (26)(354) (135642)(26(345))-(154236)6-cycle

The cycle-shape theorem

Theorem

For $\alpha, \sigma \in S_n$, let $\beta = \sigma \alpha \sigma^{-1}$. Then β has the same cycle-shape as α , except renumbered by σ ; that is, conjugation by σ turns each cycle of α of the form

to a cycle of the form

$$(\sigma(a) \ \sigma(b) \ \sigma(c) \ \dots \ \sigma(z)).$$
Consequently, for $\alpha, \beta \in S_n$ there exists some $\sigma \in S_n$ such that
 $\beta = \sigma \alpha \sigma^{-1}.$
Proof" by example.
 $O = (|2\rangle)$
 $\zeta = (|5436)$

1 11

 $It Z \ll = \measuredangle Z (Z \in C_{s}(\&))$ =) ZZZ'=2 Centralizer of alpha is exactly the stabilizer of alpha under conjugation (!!!). 91 000 = B Then (vz)a(vz) socks = 0.2dz; 5 beshoes = (a) = f So or anique up to cosets of Csn(x).

How to choose (abd) in St 1. Pilt fixed d = 1, 5, 1 4= (4)(3) 2. Pick 3-cycle using 3! a,b,c 3! Total 4.3! $# fr-cycles in Sn = \binom{h}{k} \cdot \binom{k!}{k}$

A₄ (Ch. 5)

Important point: If a normal subgroup contains one element of a conjugacy class, it must contain ALL of the elements of that conjugacy class.

Conversely: A subgroup that is a union of conjugacy classes must be normal.

 D_4 , C_4 , and $V \approx C_2 \oplus C_2$ (Chs. 1, 4) V= {e, (12)(24), (13)/24), (14/23) $C_4 = \langle (1234) \rangle$ $D_4 = symmetry \qquad [23]$ $\int \{e_{1}(1234), (13)(24), (143), (143), (143), (143), (14), (14), (13)$ $\chi^{7}-7$ ・ロト・西ト・ヨト・ヨー うらぐ

$S_3 \approx D_3$ (Chs. 1, 5) and $C_3 \approx A_3$ (Chs. 4, 5)

Shapes of elements, numbers of elements of each type.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Subgroups of A_4

Just saw: $|A_4| = 12$, elements are:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Cyclic subgroups:

Subgroups of A_4 , cont.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

The Orbit-Stabilizer Theorem and conjugacy

Suppose G permutes a set S. For $i \in S$, define

$$stab_G(i) = \{ \alpha \in G \mid \alpha(i) = i \},\$$

orb_G(i) = {\alpha(i) \mid \alpha \in G }.

Theorem (Orbit-Stabilizer)

For $i \in S$, $|G| = |\operatorname{orb}_G(i)| |\operatorname{stab}_G(i)|$.

Exmp. S_5 permuting the conjugacy classes of (1 2)(3 4), (1 2 3), (1 2 3 4 5)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The conjugacy classes of A_5

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○