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1 Orbit-Stabilizer and conjugation

Definition. Let G be a group. For x € X, we define the orbit of x under conjugation by
G to be

orbg(z) = {g:cg_l | g € G} = {y € X |y=gzg ! for some g € G} (1)

and we define the stabilizer of © under conjugation by G to be

stabg(z) = {g € G | gzg™' =2} < G. (2)

In other words, orbg(z) is the conjuagacy class of x in G, and since grg~! = x exactly
when gx = xg, stabg(x) is precisely

Clz)={9eCGlgr=1g} <G, (3)

the centralizer of x in G.

Theorem. Considering conjugation on G, for any x € X, let S be the set of all left cosets
of the coset stabg(x) in G. Then the function ® : S — orbg(z) defined by

®(astabg(x)) = aza™? (4)
is well-defined and bijective. In particular, if orbg(x) is finite, then
lorbg(x)| = |G : stabg(x)] . (5)

Proof. The only possible ambiguity in the definition of ® comes in the choice of coset repre-
sentative a in the coset astabg(z). However, if @’ is another representative for a stabg(z),
then o’ = ah for some h € stabg(x) (Gallian, Ch. 7), and

dzad ™! = ahz(ah)™ = ahzhla™! = aza™t, (6)

by the definition of what it means to have h € stabg(x).

To see that ® is surjective, for y € orbg(x), by definition of orbit, y = gxg~! for
some g € G, which means that y = ®(gstabg(z)). To see that ® is injective, suppose
®(astabg(z)) = ®(bstabg(r)). Then ara~! = bxb~!, which means that

r=>b"taxa b= (b ta)x(bla)" . (7)

Therefore, b~1a € stabg (), which means that astabg(z) = bstabg(z) (Gallian, Ch. 7). [



2 The Cycle-Shape Theorem

Theorem. For a,0 € S, let f = cac™'. Then B has the same cycle-shape as o, except

renumbered by o; that is, conjugation by o turns each cycle of a of the form
(abc ... 2) (8)

to a cycle of the form
(o(a) a(b) a(c) ... o(2)). 9)

Consequently, for o, 8 € Sy, there exists some o € S,, such that 3 = cao™!.

In other words, conjugation by ¢ “renumbers” the cycles of a by applying ¢ to them.

Proof. Observe that if we apply the permutation oo ™! to the point o(z) € {1,...,n}, we
get

caoc Yo (x)) = o(a(x)). (10)
It follows that if the disjoint cycle form of « contains a cycle of the form (a b ¢ ...),
where a(a) = b, a(b) = ¢, and so on, then the disjoint cycle form of cac™! contains a
cycle of the form (o(a) o(b) o(c) ...). Therefore, since o is a bijection, the set {1,...,n}

1is a product of disjoint cycles of the form

consists of points of the form o(x), and caoc™
(o(a) o(b) o(c) ...), as claimed.

As for the last statement, if o and  have the same cycle-shape, then there must exist
some way of putting the cycles of « in bijection with cycles of 8 of the same length. Then
if (for example) the cycle (a b ¢ ...) of a is matched with the cycle (z y z ...) of 3, choose
o € S, such that o(a) = z, o(b) = y, and so on. By the first part of the theorem, it then

follows that cac™! = 3, and the theorem follows. O

One subtlety in the Cycle-Shape Theorem: If G is a subgroup of S, and «, 5 € G then
the following statements are both true.

e If o and § are conjugate in G, then a and 8 must have the same cycle-shape (since
they are conjugate in S,,).

e But if o and S have the same cycle-shape, they need not be conjugate in G, even
though they are conjugate in S,.

For a very direct example of the second statement, take o = (1 2 3), § = (1 3 2), and
G = Az = ((1 2 3)). Since a and S have the same cycle-shape, they are conjugate in Ss,
but they are not conjugate in Ag, since Ag is abelian, and therefore, elements are only
conjugate to themselves. For a more interesting example, take @ = (1 2 3), 5 = (1 3 2),
and G = A4. Again, a and 3 are conjugate in Sy, but they are not conjugate in Ay, as the
reader can check by brute force. More specifically, the conjugacy class in S consisting of 8
3-cycles splits into two conjugacy classes of size 4 in A4: the conjugates of a = (1 2 3) and
the conjugates of 5 = (1 3 2).



3 The Fundamental Theorem of Galois Theory (expanded
statement)

Definition. Let I be a field, and let E be an extension field of F'. An automorphism of E
is a ring isomorphism ¢ : £ — E. The Galois group of E over F is defined to be

Gal(E/F) ={p € Aut(E) | p(z) = x for all x € F}. (11)
If H < Gal(E/F), we define the fized field of H to be
Eg={zecFE|px)=aforall pec H}. (12)

Theorem (Fundamental Theorem of Galois Theory (expanded)). Let F' be a field of char-
acteristic 0 or a finite field, and let E be the splitting field of some f(x) € F[x]. Let S be
the set of all subgroups of Gal(E/F'), and let F be the set of all subfields of E containing
F. Define functions ® :S - F and ¥ : F — S by

®(H) = Ey = the fized field of H, (13)
U(K) = Gal(E/K) = the group of all automorphism of E fixing K. (14)
Then ® and ¥ are inverses of each other, and therefore, bijections. (L.e., for K a subfield

of E containing F, Eq.(g/k) = K, and for H a subgroup of Gal(E/F), Gal(E/Ey) = H.)
Furthermore, if K and L are subfields of E containing F:

1. We have that K C L if and only if Gal(E/K) > Gal(E/L). (Le., ® and ¥ are
inclusion-reversing bijections.)

2. [E: K] =|Gal(E/K)|, and therefore,

_ |Gal(E/F)|

(K F] = |Gal(B/F) : Gal(B/K)| = o rer

(15)
3. K is a splitting field of some g(xz) € Flz]| if and only if Gal(E/K) is normal in
Gal(E/F). In that case,

Gal(K/F) ~ Gal(E/F)/ Gal(E/K). (16)

4. The group Gal(E/F) acts on (permutes) the set X = {ax,...,a,} of all zeros of f(x)
in .

5. If f(x) is irreducible over F, then Gal(E/F) acts transitively on X = {a1,...,an};
i.e., for i # j, there exists some o € Gal(E/F) such that o(a;) = a;.



