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1 Orbit-Stabilizer and conjugation

Definition. Let G be a group. For x ∈ X, we define the orbit of x under conjugation by
G to be

orbG(x) =
{
gxg−1 | g ∈ G

}
=

{
y ∈ X | y = gxg−1 for some g ∈ G

}
(1)

and we define the stabilizer of x under conjugation by G to be

stabG(x) =
{
g ∈ G | gxg−1 = x

}
≤ G. (2)

In other words, orbG(x) is the conjuagacy class of x in G, and since gxg−1 = x exactly
when gx = xg, stabG(x) is precisely

C(x) = {g ∈ G | gx = xg} ≤ G, (3)

the centralizer of x in G.

Theorem. Considering conjugation on G, for any x ∈ X, let S be the set of all left cosets
of the coset stabG(x) in G. Then the function Φ : S → orbG(x) defined by

Φ(a stabG(x)) = axa−1 (4)

is well-defined and bijective. In particular, if orbG(x) is finite, then

|orbG(x)| = |G : stabG(x)| . (5)

Proof. The only possible ambiguity in the definition of Φ comes in the choice of coset repre-
sentative a in the coset a stabG(x). However, if a′ is another representative for a stabG(x),
then a′ = ah for some h ∈ stabG(x) (Gallian, Ch. 7), and

a′xa′−1 = ahx(ah)−1 = ahxh−1a−1 = axa−1, (6)

by the definition of what it means to have h ∈ stabG(x).
To see that Φ is surjective, for y ∈ orbG(x), by definition of orbit, y = gxg−1 for

some g ∈ G, which means that y = Φ(g stabG(x)). To see that Φ is injective, suppose
Φ(a stabG(x)) = Φ(b stabG(x)). Then axa−1 = bxb−1, which means that

x = b−1axa−1b = (b−1a)x(b−1a)−1. (7)

Therefore, b−1a ∈ stabG(x), which means that a stabG(x) = b stabG(x) (Gallian, Ch. 7).



2 The Cycle-Shape Theorem

Theorem. For α, σ ∈ Sn, let β = σασ−1. Then β has the same cycle-shape as α, except
renumbered by σ; that is, conjugation by σ turns each cycle of α of the form

(a b c . . . z) (8)

to a cycle of the form
(σ(a) σ(b) σ(c) . . . σ(z)). (9)

Consequently, for α, β ∈ Sn, there exists some σ ∈ Sn such that β = σασ−1.

In other words, conjugation by σ “renumbers” the cycles of α by applying σ to them.

Proof. Observe that if we apply the permutation σασ−1 to the point σ(x) ∈ {1, . . . , n}, we
get

σασ−1(σ(x)) = σ(α(x)). (10)

It follows that if the disjoint cycle form of α contains a cycle of the form (a b c . . . ),
where α(a) = b, α(b) = c, and so on, then the disjoint cycle form of σασ−1 contains a
cycle of the form (σ(a) σ(b) σ(c) . . . ). Therefore, since σ is a bijection, the set {1, . . . , n}
consists of points of the form σ(x), and σασ−1 is a product of disjoint cycles of the form
(σ(a) σ(b) σ(c) . . . ), as claimed.

As for the last statement, if α and β have the same cycle-shape, then there must exist
some way of putting the cycles of α in bijection with cycles of β of the same length. Then
if (for example) the cycle (a b c . . . ) of α is matched with the cycle (x y z . . . ) of β, choose
σ ∈ Sn such that σ(a) = x, σ(b) = y, and so on. By the first part of the theorem, it then
follows that σασ−1 = β, and the theorem follows.

One subtlety in the Cycle-Shape Theorem: If G is a subgroup of Sn and α, β ∈ G then
the following statements are both true.

• If α and β are conjugate in G, then α and β must have the same cycle-shape (since
they are conjugate in Sn).

• But if α and β have the same cycle-shape, they need not be conjugate in G, even
though they are conjugate in Sn.

For a very direct example of the second statement, take α = (1 2 3), β = (1 3 2), and
G = A3 = 〈(1 2 3)〉. Since α and β have the same cycle-shape, they are conjugate in S3,
but they are not conjugate in A3, since A3 is abelian, and therefore, elements are only
conjugate to themselves. For a more interesting example, take α = (1 2 3), β = (1 3 2),
and G = A4. Again, α and β are conjugate in S4, but they are not conjugate in A4, as the
reader can check by brute force. More specifically, the conjugacy class in S4 consisting of 8
3-cycles splits into two conjugacy classes of size 4 in A4: the conjugates of α = (1 2 3) and
the conjugates of β = (1 3 2).



3 The Fundamental Theorem of Galois Theory (expanded
statement)

Definition. Let F be a field, and let E be an extension field of F . An automorphism of E
is a ring isomorphism ϕ : E → E. The Galois group of E over F is defined to be

Gal(E/F ) = {ϕ ∈ Aut(E) | ϕ(x) = x for all x ∈ F} . (11)

If H ≤ Gal(E/F ), we define the fixed field of H to be

EH = {x ∈ E | ϕ(x) = x for all ϕ ∈ H} . (12)

Theorem (Fundamental Theorem of Galois Theory (expanded)). Let F be a field of char-
acteristic 0 or a finite field, and let E be the splitting field of some f(x) ∈ F [x]. Let S be
the set of all subgroups of Gal(E/F ), and let F be the set of all subfields of E containing
F . Define functions Φ : S → F and Ψ : F → S by

Φ(H) = EH = the fixed field of H, (13)

Ψ(K) = Gal(E/K) = the group of all automorphism of E fixing K. (14)

Then Φ and Ψ are inverses of each other, and therefore, bijections. (I.e., for K a subfield
of E containing F , EGal(E/K) = K, and for H a subgroup of Gal(E/F ), Gal(E/EH) = H.)
Furthermore, if K and L are subfields of E containing F :

1. We have that K ⊆ L if and only if Gal(E/K) ≥ Gal(E/L). (I.e., Φ and Ψ are
inclusion-reversing bijections.)

2. [E : K] = |Gal(E/K)|, and therefore,

[K : F ] = |Gal(E/F ) : Gal(E/K)| = |Gal(E/F )|
|Gal(E/K)|

. (15)

3. K is a splitting field of some g(x) ∈ F [x] if and only if Gal(E/K) is normal in
Gal(E/F ). In that case,

Gal(K/F ) ≈ Gal(E/F )/Gal(E/K). (16)

4. The group Gal(E/F ) acts on (permutes) the set X = {a1, . . . , an} of all zeros of f(x)
in E.

5. If f(x) is irreducible over F , then Gal(E/F ) acts transitively on X = {a1, . . . , an};
i.e., for i 6= j, there exists some σ ∈ Gal(E/F ) such that σ(ai) = aj.


