
Math 128B, Mon May 10

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Last reading of the semester: Ch. 32.

I PS10 due tonight; PS11 outline due Fri.

I Final exam, Tue May 25.



Orbit-Stabilizer and conjugacy

G a group. Define

orbG (x) =
{
gxg−1 | g ∈ G

}
=

{
y ∈ X | y = gxg−1 for some g ∈ G

}
,

stabG (x) =
{
g ∈ G | gxg−1 = x

}
≤ G .

I.e., orbG (x) is the conjuagacy class of x in G and stabG (x) is
precisely

C (x) = {g ∈ G | gx = xg} ≤ G ,

the centralizer of x in G .

Theorem (Orbit-Stabilizer)

For i ∈ S, |G | = |orbG (i)| |stabG (i)|.



Example: Some orbits and stabilizers in S5

(a b c d e), (a b c), and (a c)(b d) (e.g., (1 3)(2 4)).







The conjugacy classes of A5







Normal subgroups and simple groups

Definition
Let H ≤ G . To say that H is normal means that for any a ∈ H
and g ∈ G , we have that gag−1 ∈ H. (Note that even if
gag−1 ∈ H, it need not be the case that gag−1 = a.) In that case,
we write H C G .

Note that a subgroup H C G exactly when H is a union of
conjugacy classes.

Definition
To say that a group G is simple means that the only normal
subgroups of G are {e} and G .



A5 is simple

Brute force:



The Galois group of a field extension

F a field, E an extension of F .

An automorphism of E is a ring isomorphism ϕ : E → E .

The Galois group of E over F is:

Gal(E/F ) = {ϕ ∈ Aut(E ) | ϕ(x) = x for all x ∈ F} .

If H ≤ Gal(E/F ), we define the fixed field of H to be

EH = {x ∈ E | ϕ(x) = x for all ϕ ∈ H} .



Examples (proofs later)

If E is splitting field of f (x) over F , turns out that one really
effective way to represent Gal(E/F ) is as a group of permutations
of the roots of f .

Example: Splitting field of x2 + 1 over R.

Example: Splitting field of x2 − 5 over Q.



More examples
Example: Splitting field of x3 − 7 over Q.

Example: Splitting field of x4 − 2 over Q.



Subgroups of Gal(E/F )

Example: Splitting field of x3 − 7 over Q.



Subfields of E containing F — upside down

Example: Splitting field of x3 − 7 over Q.



Fundamental Theorem of Galois Theory

Let F be a field of characteristic 0 or a finite field, and let E be
the splitting field of some f (x) ∈ F [x ]. Let S be the set of all
subgroups of Gal(E/F ), and let F be the set of all subfields of E
containing F .
Define Φ : S → F and Ψ : F → S by

Φ(H) = EH = the fixed field of H,

Ψ(K ) = Gal(E/K ) = the group of all automorphism of E fixing K .

Then Φ and Ψ are inverses of each other, and therefore, bijections.
Furthermore, if K , L subfields of E containing F , then

K ⊆ L ⇔ Gal(E/K ) ≥ Gal(E/L)

(I.e., Φ and Ψ are inclusion-reversing.)



Fundamental Theorem of Galois Theory, cont.

If K , L subfields of E containing F :

1. [E : K ] = |Gal(E/K )|, and therefore,

[K : F ] = |Gal(E/F ) : Gal(E/K )| =
|Gal(E/F )|
|Gal(E/K )|

.

2. K is a splitting field of some g(x) ∈ F [x ] if and only if
Gal(E/K ) is normal in Gal(E/F ). In that case,

Gal(K/F ) ≈ Gal(E/F )/Gal(E/K ).

3. The group Gal(E/F ) acts on (permutes) the set
X = {a1, . . . , an} of all zeros of f (x) in E .

4. If f (x) is irreducible, then Gal(E/F ) acts transitively on
X = {a1, . . . , an}; i.e., for i 6= j , there exists some
σ ∈ Gal(E/F ) such that σ(ai ) = aj .



Picture of the Fundamental Theorem


