Math 128B, Mon Apr 26

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today and Wed: Review Chs. 1, 4, 5, 7, 9, 10. Reading for today and weak the $(S_n, A_n, D_n, C_n \approx \mathbf{Z}_n)$; new reading pp. 387–388.
- PS09 due Wed night.
- Exam 3 in one week, Mon May 03.
- Exam review Fri Apr 30, 10am-noon.

Extra office hour today, 1-2pm

Exam 3: Chs 20-23 PS07, PS08, PS09 Sample exam and study auide posted toniaht.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\frac{P_{501}}{E} = GF(125) - GF(5^{2})^{2}$ act witzer of x -x -> Prove E = Z, (a) Q: What are the possible subfields of E? (b) ord(a) div |E*|=124 (b) Could ord(21=1? No: Only elt ord 1 is 1, a=1

Could ord (q)=27 If ord(a)=> => a2=1 No: Solve x=1 x2-1=0 $(x+1)(x-1)=y=x=\pm 1$ x = 1 or 4

Recap: Constructible numbers

Suppose we start w/a straightedge, compass, and a unit length, and from those starting ingredients, we can:

- 1. Intersect two lines
- 2. Intersect a circle and a line
- 3. Intersect two circles

Call $\alpha \in \mathbf{R}$ constructible if we can construct a segment of length $\mathbf{\dot{T}}\alpha$. Then:

Theorem

The set of constructible numbers F is closed under +, -, \times , and reciprocals; i.e., F is a subfield of \mathbf{R} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Only square root extensions are possible

Suppose we follow a sequence of steps $1, \ldots, n$ to construct a given length. Let F_k be the field generated by all lengths constructed up through step k (and $F_0 = \mathbf{Q}$). Because each operation involves taking an intersection of two lines, a line and a circle, or two circles, $F_{k+1} \subseteq F_k(\sqrt{a})$ for some $a \in F_k$. By multiplicativity of degree, we see that:

Theorem

 $[F_n: \mathbf{Q}] = 2^t$ for some $t \ge 0$.

So for any constructible length *a*, considering $\mathbf{Q} \subseteq \mathbf{Q}(a) \subseteq F_n$:

A specific non-constructible angle

Let $\theta = \frac{2\pi}{18} = 20^{\circ}$. If we can construct θ , we can construct $\alpha = \cos \theta$, and from trig identities, can show that α is a zero of $p(x) = 8x^3 - 6x - 1$. Can show p(x) is irreducible, so $[\mathbf{Q}(\alpha): \mathbf{Q}] = 3$, which means that α is non-constructible.

Cor: The angle 60° is not trisectable, so no general trisection algorithm can possibly exist.

End fields (for now ...)

Review (Ch. 5): Permutations

- In cyclic notation, permutation written as product of cycles: (a b c ... z) means a goes to b goes to c goes to...goes to z goes back to a.
- If permutation written as a product of disjoint cycles, order is LCM of cycle lengths.

Examples: (Randomly generated by Maple!) α , β , α^{-1} , $\alpha\beta$, orders.

B= (1234507890) (B= (6724015638) B = ((b)(27510893)(4))ork(B)=14 LB=Bfirst, then a (doB) =(17)(2)(38456)(1)(10)= (17) (38456) ord(ap) $\alpha = (549)(1)(761082)$

2 = (1 5 4 9 3)(27 6 10 8) ord 5

Review (Ch. 5): Even and odd permutations Recall:

- Every permutation is a product of 2-cycles (maybe not disjoint), in many different ways.
- But for a given α, products are either all an even number of 2-cycles or an odd number of 2-cycles. Always even means α is even, always odd means α is odd.
- Cycles of odd length are even permutations and cycles of even length are odd permutations.
- So a permutation in disjoint cycle form is even iff it has an even number of even cycles.

Examples: in A = (17, 147)(28(067) e ven)nut B = (16)(27810593) odd perm in $A_{100}B = (17)(38456)$ odd porm

Review (Ch. 5): Permutation groups

Definition

 S_n is the group of all permutations on *n* objects.

 A_n is the subgroup of S_n consisting of all **even** permutations on *n* objects.

A **permutation group** on *n* objects is a subgroup of S_n .

Definition

En: Sn, An To say that a permutation group G on n objects is transitive means that for any $a, b \in \{1, ..., n\}$, there is some $\alpha \in G$ such that $\alpha(a) = b$. ("You can always get here from there.") To prove that the quintic is unsolvable: $A_{1}(n23)$

- Need to understand transitive permutation groups on 4 and 5 objects.
- Need to understand all subgroups of those groups, especially normal vs. non-normal subgroups

Conjugacy (Ch. 24, new)

Definition

G a group. To say that $a \in G$ is **conjugate** to $b \in G$ means that there exists some $g \in G$ such that $gag^{-1} = b$. The **conjugacy class** of $a \in G$ is the set of all elements of *G* conjugate to *a*, i.e.,

 $\left\{ gag^{-1} \mid g \in G \right\}.$ Note that a subgroup is **normal** exactly when it is also closed under conjugacy. conjugation. **Example:** $a \in S_6$, random examples of $g \in S_6$: n=(1235)(4() $g_{ag}^{-1} = (235) \cdot (1235)(46) \cdot (25))$ $g_{ag}^{-1} = (1352)(46) \cdot (25)$ Note: gag^{-1} has the same cycle-shape as a (1352)(46) = (46)

S₄ (Ch. 5)

Shapes of elements, numbers of elements of each type.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

A₄ (Ch. 5)

Shapes of elements, numbers of elements of each type.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

D_4 , C_4 , and $V \approx C_2 \oplus C_2$ (Chs. 1, 4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$S_3 \approx D_3$ (Chs. 1, 5) and $C_3 \approx A_3$ (Chs. 4, 5)

Shapes of elements, numbers of elements of each type.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ