
Math 128B, Mon Apr 19

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: Chs. 22–23. Reading for Mon: Ch. 23.

I Reading for Wed: Chs. 1, 4, 5, 7 (Sn, An, Dn, Cn ≈ Zn).
We’ll be going off-book somewhat. . . .

I PS08 due tonight, PS09 outline due Wed night.

I Problem session Fri Apr 23, 10am–noon.

I Second round of music:
https://forms.gle/v4Xta3E9u3At9sRV8



Finite fields
Recall: Finite field of characteristic p is a vector space over Z/(p)
and therefore has order pe for some e ≥ 1. In fact:

Theorem
For each prime p and e ≥ 1, there exists a unique field of order
q = pe , denoted by GF (q); namely, GF (q) is the splitting field of
xq − x over Fp.

Proof: Uses existence and uniqueness of splitting fields.













A common confusion

Note that while GF (p) ≈ Zp, for e ≥ 2 and q = pe , GF (q) 6≈ Zq.

Example: GF (8) vs. Z8.



The multiplicative group of a finite field is cyclic
p prime, e ≥ 1, q = pe .

Theorem
The group of units of GF (q) is cyclic of order q − 1.

Proof: Define the exponent of a finite group G to be smallest
n ≥ 1 such that an = 1 for all a ∈ G .
Let G be the group of units of GF (q), |G | = q − 1. From
classification of finite abelian groups (!!), the exponent of

G ≈ Zp
n1
1
⊕ · · · ⊕ Zp

nk
k

is lcm(pn11 , . . . , p
nk
k ). This = q − 1 if and only if no primes pi are

repeated if and only if G is cyclic; otherwise < q − 1.
Assume (by way of contradiction) that G is not cyclic.





Example: GF (9)
Construction, orders of elements, primitive elements, factorizations
of x9 − x and x2 + 1.





Construction of finite fields

Theorem
Let E be a finite field of order pe . Then there exists some
irreducible m(x) ∈ Fp[x ] such that E ≈ Fp[x ]/〈m(x)〉.
Proof:





Subfields of a finite field

p prime, e ≥ 1, q = pe .

Theorem
For each divisor d of e, GF (q) has exactly one subfield of order pd ,
and those are the only subfields of q.

Exmp: Subfields of GF (512).



Proof of subfields theorem
p prime, e ≥ 1, q = pe .

Theorem
For each divisor d of e, GF (q) has exactly one subfield of order pd ,
and those are the only subfields of q.

Proof: Only possible orders are pd where d divides e because
GF (q) is a v.s. over any subfield K :

Existence: Suppose d divides e, K =
{
α ∈ GF (q) | αpd = α

}
,

GF (q)∗ = 〈β〉.



Ruler-and-compass constructions

Suppose we start w/a straightedge, compass, and a unit length:

I.e., from those starting ingredients, we can:

1. Intersect two lines

2. Intersect a circle and a line

3. Intersect two circles

Q: Which lengths can we construct? I.e., which points can we
capture as one of those types of intersections?



Constructible fields

Call α ∈ R constructible if we can construct a segment of length
α. Then

Theorem
The set of constructible numbers F is closed under +, −, ×, and
reciprocals; i.e., F is a subfield of R.

Proof: Suppose we have a and b constructed. To construct ab:



Square root extensions are possible

Theorem
F is closed under taking square roots.



Only square root extensions are possible

Suppose we follow a sequence of steps 1, . . . , n to construct a
given length. Let Fk be the field generated by all lengths
constructed up through step k (and F0 = Q). Because each
operation involves taking an intersection of two lines, a line and a
circle, or two circles, Fk+1 ⊆ Fk(

√
a) for some a ∈ Fk . By

multiplicativity of degree, we see that:

Theorem
[Fn :Q] = 2t for some t ≥ 0.

So for any constructible length a, considering Q ⊆ Q(a) ⊆ Fn:



A specific non-constructible angle

Let θ =
2π

18
= 20◦. If we can construct θ, we can construct

α = cos θ, and from trig identities, can show that α is a zero of
p(x) = 8x3 − 6x − 1. Can show p(x) is irreducible, so
[Q(α) :Q] = 3, which means that α is non-constructible.


