Math 128B, Mon Apr 19
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Use a laptop or desktop with a large screen so you can read
these words clearly.

In general, please turn off your camera and mute yourself.

Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

Please always have the chat window open to ask questions.
Reading for today: Chs. 22-23. .
Reading for Wed: Chs. 1, 4, 5, 7 (S, An, Dn, C,, ~Zp).

We'll be going off-book somewhat. . .. 9 1 I o
PS08 due tonight, PS09 outline due Wed night. /)
Problem session Fri Apr 23, 10am—noon.

Second round of music:
https://forms.gle/v4Xta3E9u3At9sRV8



Finite fields
Recall: Finite field of characteristic p is a vector space over Z/(p)
and therefore has order p® for some e > 1. In fact:
Theorem (up to isomorphism)
For each prime p and e > 1, there exists a unique}field of order
q = p¢, denoted by GF(q); namely, GF(q) is the splitting field of
x9 — x over Fp.
Proof: Uses existence and uniqueness of splitting fields.

Let E be a field of order q = p”“e.
The nonzero elements of E are all units and therefore form the group of units

of E, denoted by E*. Note that |E*| = g-1, so by Lagrange's Theorem (1ll),
the (multlpllcatlve) order of any nonzero element of E must divide g-1.
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A common confusion

Note that while GF(p) ~ Z,, for e > 2 and q = p®, GF(q) # Z,.

Example: GF(8) vs. Zs.
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The ring Z_8 has zero divisors,
Zg and also 2 has noinverse in Z_8.
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The multiplicative group of a finite field is cyclic
p prime, e > 1, g = p®. So GF(q) has an element of order
Theorem g-1, called a primitive elt.

The group of units of GF(q) is cyclic of order q — 1.L

Proof: Define the exponent of a finite group G to be smallest

n > 1 such that a” =1 for all a € G.

Let G be the group of units of GF(q), |G| = g — 1. From

classification of finite abelian groups (!!), the exponent of zk B?k

(Ch 81 CRZnG S L, RO <=’
is lem(py™, ..., pp*). This = g — 1 j#and only if no primes p; are 9“{

repeated if and only if G is cyclic; otherwise < g — 1. 6\ ﬁ:\
Assume (by way of contradiction) that G is not cyclic. /
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But that means that x*n - 1 is a polynomial of degree n < g-1 with g-1
zeros, and a polynomial of degree n can't have more than n zerosl!!!!
Contradiction, which means that G is cyclic.

Note: Proof is by contradiction and therefore extremely nonconstructive.

If you could figure out an algorithm for finding primitive elements in a finite
field == for sure a Ph.D., probably a fancy job, maybe you would be
famous (for math).
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Example: GF(9)
Construction, orders of elements, primitive elements, factorizations
of x — x and x2 + 1.

¥ (a=/ [-7)/<>(LH> o= |

ek o= == °< /a“={-l\L* |
ovder(() ovde f(-<)'- f 0(/‘./ Al 2L
-...-l DVA V(" n 2 OYl(q“]“

burhe-C <=4 _
C"F(ﬁ?‘ Cy i 0vder b4 9"‘“‘1"\

NV,



(&rx\\'.(.\/cl'uc orhrr 8 hae

L genergtars b/i\g_(g)—_-.u‘( )
Euwler phi

Chade’ gra(i+a)= 8. ( .
X = X (- V(< =<\ [K =«

X (y—(.m\)(x-(wn)(x -(-))

(k- (- m()("(w(‘*l )

K| "-(7(-o<\(x+ot\



Construction of finite fields H- .z

Theorem
Let E be a finite field of order p¢. Then there exi sts some
irreducible m(x) € Fp[x] such that E ~ Fp[x]/(m
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Subfields of a finite field
p prime, e > 1, g = p°.

Theorem
For each divisor d of e, GF(q) has exactly one subfield of order p?,
and those are the only subfields of q.

Exmp: Subfields of GF(5'2).

Next t e

S —




Proof of subfields theorem
p prime, e > 1, g = p°.
Theorem

For each divisor d of e, GF(q) has exactly one subfield of order p?,
and those are the only subfields of q.

Proof: Only possible orders are p? where d divides e because
GF(q) is a v.s. over any subfield K:

Existence: Suppose d divides e, K = {a € GF(q) | a*” = a},
GF(q)" = (B).



Ruler-and-compass constructions

Suppose we start w/a straightedge, compass, and a unit length:

l.e., from those starting ingredients, we can:

1. Intersect two lines
2. Intersect a circle and a line
3. Intersect two circles

Q: Which lengths can we construct? l.e., which points can we
capture as one of those types of intersections?



Constructible fields

Call a € R constructible if we can construct a segment of length
a. Then

Theorem
The set of constructible numbers F is closed under +, —, X, and
reciprocals; i.e., F is a subfield of R.

Proof: Suppose we have a and b constructed. To construct ab:



Square root extensions are possible

Theorem
F is closed under taking square roots.



Only square root extensions are possible

Suppose we follow a sequence of steps 1,..., n to construct a
given length. Let F, be the field generated by all lengths
constructed up through step k (and Fp = Q). Because each
operation involves taking an intersection of two lines, a line and a
circle, or two circles, Fx1 C Fy(y/a) for some a € F. By
multiplicativity of degree, we see that:

Theorem
[Fn:Q] = 2¢ for some t > 0.

So for any constructible length a, considering Q C Q(a) C Fy:



A specific non-constructible angle

Let 0 = i—ﬂ = 20°. If we can construct 6, we can construct

« = cosf, and from trig identities, can show that « is a zero of
p(x) = 8x3 — 6x — 1. Can show p(x) is irreducible, so
[Q(): Q] = 3, which means that « is non-constructible.



