Math 128B, Wed Mar 24

v

Use a laptop or desktop with a large screen so you can read
these words clearly.

In general, please turn off your camera and mute yourself.

Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

Please always have the chat window open to ask questions.
Reading for today: Ch. 21.

Exam 2 on Wed Apr 07, on Chs. 15-19 (PS04-06). Review
session Mon Apr 05 (recorded to YouTube).
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Recap: A thing you weren't even worried about E
(

F

Suppose f(x) irreducible over F, E splitting field of f(x) over F.
Is it possible that f(x) has repeated roots in E?

If f(X) — aan + .4 a2X2 + aix + ag € F[X], we define algebraic

derivative

f'(x) = napx""t + - 4 2apx + a1.

Theorem: f(x) € F[x]. Then TFAE:

1. f has a multiple zero in some extension E of F.
2. ged(f(x), f'(x)) has degree > 1.

Computed in F[x] Why: B/c of the product rule!



When do irreducibles have multiple zeros?

Suppose f(x) irreducible over F.
» If char F = 0, then f has no multiple zeros.

» |If char F = p, then f has multiple zeros iff f(x) = g(xP) for

some g € F[x]. (Nonzero terms of f are all powers of x*p
Proof: = terms of the form x*{kp} )

In general (char p or char 0), f' will have smaller degree than f, so the only
way that ged(ff') can have degree >=1isiff' = 0.
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Perfect fields

l.e., every element of F is a pth
) power of something in F.

Definition
F is perfect when eitheré:ar F =0Jor\char F = p and FP = F.

A= £ . . = A .
Theorem F*p=F as if-then: If y in F, then y = x"p for some x in F.

Let F be a finite field of characteristic p. Then F is perfect.
Proof: Follows from fact of independent interest:

Claim: The map p : F — F given by p(x) = xP is an

automorphism of F. (Frob. dh‘{‘DM.'&‘f [:')
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No multiple zeros over a perfect field

Theorem

If F is perfect and f(x) € F[x] irreducible, then f does not have
multiple zeros in any extension of F.

Proof: Characteristic 0 case done, so suppose char F = p and F is
perfect
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What happens over imperfect fields?

Theorem
f(x) irreducible over F and E the splitting field of f over F. Then
all zeros of f have the same multiplicity.

Corollary

f(x) irreducible over F and E the splitting field of f over F. Then
there exists n such that

f(x)=(x—a1)"...(x—a)",

where a1, ..., a; are distinct elements of E.
Example, again: £ = Zs(t), F = Zs(t°), f(x) = x> — 5.

(‘x’?"“t 9) =(x —'t)'s-



Algebraic vs. transcendental extensions

E extension of a field F, a € E.

If f(a) = 0 for some nonzero f(x) € F[x], we say a is algebraic
over F;
otherwise, we say a is transcendental over F.

If every a € E is algebraic over F, we say E is an algebraic
extension of F;
otherwise we say E is a transcendental extension of F.

If E = F(a) for some a € E, we say that E is a simple extension

of F. S‘ﬂﬁlt
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The minimal polynomial of a € E “TH:;
Theorem: E extension of F, a € E. F(tﬂ)

‘ . If a transcendental over F, then F(a) = F(x).

2 If a algebraic over F, there exists a monic p(x) € F[x] such that:
> Fla) ~ P (el R Le. =]

p(x) is the monic polynomial of smallest degree such that

p(a

)=
p(x) is wreduable over F; and
» If f(x) € F[x] and f(a) = 0, then p(x) divides f(x) in F[x].

Example: (3 (,qm uil 5‘:-':1;?7 .
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Proof of minimal polynomial (algebraic case)



Degree of an extension

E an extension of F.

Recall that the whole point of abstract vector spaces is that E is a
v.s. over F. To say that E has degree n over F, written
[E : F] = n, means that dim E = n as a v.s. over F.

If [E : F] is finite, then we say E is a finite extension of F;
otherwise, E is an infinite extension of F.

Examples: (without proof)



A key class of examples

If p(x) irreducible over F, E = F[x]/(p(x)), then
[E : F] = deg p(x).

Proof:



Finite extensions are algebraic

Theorem
If E is a finite extension of F, then E is an algebraic extension of F.

Proof:

Theorem (Multiplicativity)

K finite extension of E, E finite extension of F. Then

[K:F]=[K:E]E:F]< .



Proof of Multiplicativity



Example: Q(+/3,v/5) and Q(v/3 + V/5)



Example: Splitting field of x3 — 7 over Q



Primitive element theorem

Generalizing Q(v/3 + V/5):

Theorem

F a field with char F = 0 (and therefore F infinite). If a, b
algebraic over F, then there exists ¢ € F(a, b) such that

F(c) = F(a,b).

Idea of proof: ¢ = a+ db for (basically) random d € F works.

» If p(x) is min poly of a over F, g(x) is min poly of b over F,
and r(x) = p(c — dx), there are only finitely many d € F that
allow g(x) and r(x) to have common zeros other than b.
Avoid those.

» That implies that the (irreducible) min poly s(x) of b over
F(c) has only one zero, and because F(c) has char 0, must

have s(x) = x — b (no repeated zeros in an irreducible), i.e.,
b e F(c).



