
Math 128B, Wed Mar 24

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: Ch. 21.

I Exam 2 on Wed Apr 07, on Chs. 15–19 (PS04–06). Review
session Mon Apr 05 (recorded to YouTube).



Recap: A thing you weren’t even worried about

Suppose f (x) irreducible over F , E splitting field of f (x) over F .
Is it possible that f (x) has repeated roots in E?

If f (x) = anx
n + · · ·+ a2x

2 + a1x + a0 ∈ F [x ], we define

f ′(x) = nanx
n−1 + · · ·+ 2a2x + a1.

Theorem: f (x) ∈ F [x ]. Then TFAE:

1. f has a multiple zero in some extension E of F .

2. gcd(f (x), f ′(x)) has degree ≥ 1.



When do irreducibles have multiple zeros?

Suppose f (x) irreducible over F .

I If char F = 0, then f has no multiple zeros.

I If char F = p, then f has multiple zeros iff f (x) = g(xp) for
some g ∈ F [x ].

Proof:





Perfect fields

Definition
F is perfect when either char F = 0 or char F = p and F p = F .

Theorem
Let F be a finite field of characteristic p. Then F is perfect.

Proof: Follows from fact of independent interest:

Claim: The map ρ : F → F given by ρ(x) = xp is an
automorphism of F .





No multiple zeros over a perfect field

Theorem
If F is perfect and f (x) ∈ F [x ] irreducible, then f does not have
multiple zeros in any extension of F .

Proof: Characteristic 0 case done, so suppose char F = p and F is
perfect.







What happens over imperfect fields?

Theorem
f (x) irreducible over F and E the splitting field of f over F . Then
all zeros of f have the same multiplicity.

Corollary

f (x) irreducible over F and E the splitting field of f over F . Then
there exists n such that

f (x) = (x − a1)n . . . (x − at)
n,

where a1, . . . , at are distinct elements of E .

Example, again: E = Z5(t), F = Z5(t5), f (x) = x5 − t5.



Algebraic vs. transcendental extensions

E extension of a field F , a ∈ E .

If f (a) = 0 for some nonzero f (x) ∈ F [x ], we say a is algebraic
over F ;
otherwise, we say a is transcendental over F .

If every a ∈ E is algebraic over F , we say E is an algebraic
extension of F ;
otherwise we say E is a transcendental extension of F .

If E = F (a) for some a ∈ E , we say that E is a simple extension
of F .







The minimal polynomial of a ∈ E
Theorem: E extension of F , a ∈ E .

If a transcendental over F , then F (a) ≈ F (x).

If a algebraic over F , there exists a monic p(x) ∈ F [x ] such that:

I F (a) ≈ F [x ]/〈p(x)〉;
I p(x) is the monic polynomial of smallest degree such that

p(a) = 0;

I p(x) is irreducible over F ; and

I If f (x) ∈ F [x ] and f (a) = 0, then p(x) divides f (x) in F [x ].

Example:



Proof of minimal polynomial (algebraic case)



Degree of an extension
E an extension of F .

Recall that the whole point of abstract vector spaces is that E is a
v.s. over F . To say that E has degree n over F , written
[E : F ] = n, means that dimE = n as a v.s. over F .

If [E : F ] is finite, then we say E is a finite extension of F ;
otherwise, E is an infinite extension of F .

Examples: (without proof)



A key class of examples

If p(x) irreducible over F , E = F [x ]/〈p(x)〉, then
[E : F ] = deg p(x).

Proof:



Finite extensions are algebraic

Theorem
If E is a finite extension of F , then E is an algebraic extension of F .

Proof:

Theorem (Multiplicativity)

K finite extension of E , E finite extension of F . Then

[K : F ] = [K : E ][E : F ] <∞.



Proof of Multiplicativity



Example: Q(
√

3,
√

5) and Q(
√

3 +
√

5)



Example: Splitting field of x3 − 7 over Q



Primitive element theorem

Generalizing Q(
√

3 +
√

5):

Theorem
F a field with char F = 0 (and therefore F infinite). If a, b
algebraic over F , then there exists c ∈ F (a, b) such that
F (c) = F (a, b).

Idea of proof: c = a + db for (basically) random d ∈ F works.

I If p(x) is min poly of a over F , q(x) is min poly of b over F ,
and r(x) = p(c − dx), there are only finitely many d ∈ F that
allow q(x) and r(x) to have common zeros other than b.
Avoid those.

I That implies that the (irreducible) min poly s(x) of b over
F (c) has only one zero, and because F (c) has char 0, must
have s(x) = x − b (no repeated zeros in an irreducible), i.e.,
b ∈ F (c).


