Math 128B, Mon Apr 12

» Use a laptop or desktop with a large screen so you can read
these words clearly.

» In general, please turn off your camera and mute yourself.
» Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

P Please always have the chat window open to ask quest

ions.
» Reading for today: Ch. 23. Reading for Mon: Ch. 23. (7( \ IL{')

» Next week: Groups are back. Review: Chs. 1, 4,5, 7 (S, An,
D,, C,~1Z,).

» PS08 outline due terigst, full version due Mon.

» Problem session Fri Apr 16, 10am—noon. —
[

» Second round of music: .
ksipg://forms.gle/ulXta? A+ QaRV b\‘j I\T




Recap: Degree of an extension

Definition
E an extension of F. To say that E has degree n over F, written
[E: F] = n, means that dim E = n as a v.s. over F.

Definition
E an extension of F, a € E. The degree of a over F is [F(a): F].

Theorem (Multiplicativity) \(

K finite extension of E, E finite extension of F. Then

[K:Fl=[K:EJ[E:F]<oo. VW| E
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a is NOT an element of F <=> deg(a) > 1 <=> [F(a):F] = 1.
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Algebraic over algebraic is algebraic

Theorem
If K is an alg ext of E and E is an alg ext of F, then K is an alg
ext of F.

ogf~Sup € K(B se Qis-#igebralc ov

Why: Consequence of multiplicativity; see text for
details.



Subfield of algebraic elements

Theorem
E an extension of F, K the set of all elements of E that are
algebraic over F. Then K is a subfield of E.

=.Need to show that for a, b € K, b # 0, we have
+b,a—b,ab,ab™! € K.

\,/lr\/‘,(ol/%;ﬂm" F{a’b)owy F

Example: Consider the set K of all complex numbers that are
algebraic over Q. By the Fundamental Theorem of Algebra,
every polynomial equation has a solution in C, so K contains the
all solutions to all polynomials equations with rational coeffs.

Heny ! Study YW/ =0k



Finite fields

Recall: Finite field of characteritic p is a vector space over Z/(p)
and therefore has order p® for some e > 1. In fact:

Theorem

For each prime p and e > 1, there exists a unique field of order

q = p¢, denoted by GF(q),; namely, GF(q) is the splitting field of
x9 — x over Fp.

Proof: Uses existence and uniqueness of splitting fields.



A common confusion

Note that while GF(p) = Z,, for e > 2 and q = p®, GF(q) % Z,.

Example: GF(8) vs. Zg.



The multiplicative group of a finite field is cyclic
p prime, e > 1, g = p°.
Theorem
The group of units of GF(q) is cyclic of order g — 1.
Proof: Define the exponent of a finite group G to be smallest
n > 1 such that 3" =1 for all a € G.
Let G be the group of units of GF(q), |G| = g — 1. From
classification of finite abelian groups (!!), the exponent of

G%Zp{u @"'@ZPZk
is lem(py™, ..., pp¥). This = g — 1 exactly when G is cyclic;

otherwise < g — 1.
Assume (by way of contradiction) that G is not cyclic.



Example: GF(9)
Construction, orders of elements, primitive element, factorizations
of xX% — x and x2 + 1.



Subfields of a finite field
p prime, e > 1, g = p°.

Theorem
For each divisor d of e, GF(q) has exactly one subfield of order p?,
and those are the only subfields of q.

Exmp: Subfields of GF(5'2).



Proof of subfields theorem
p prime, e > 1, g = p°.

Theorem
For each divisor d of e, GF(q) has exactly one subfield of order p¢,
and those are the only subfields of q.

Proof: “Only” because GF(q) is a v.s. over a subfield K:

Existence: K = {a € GF(q) | b’ = a}. Suppose GF(q)* = (8).



Ruler-and-compass constructions

Suppose we start w/a straightedge, compass, and a unit length:

l.e., from those starting ingredients, we can:

1. Intersect two lines
2. Intersect a circle and a line
3. Intersect two circles

Q: Which lengths can we construct? l.e., which points can we
capture as one of those types of intersections?



Constructible fields

Call a € R constructible if we can construct a segment of length
a. Then

Theorem
The set of constructible numbers F is closed under +, —, X, and
reciprocals; i.e., F is a subfield of R.

Proof: Suppose we have a and b constructed. To construct ab:



Square root extensions are possible

Theorem
F is closed under taking square roots.



Only square root extensions are possible

Suppose we follow a sequence of steps 1,..., n to construct a
given length. Let F, be the field generated by all lengths
constructed up through step k (and Fp = Q). Because each
operation involves taking an intersection of two lines, a line and a
circle, or two circles, Fx1 C Fy(y/a) for some a € F. By
multiplicativity of degree, we see that:

Theorem
[Fn:Q] = 2¢ for some t > 0.

So for any constructible length a, considering Q C Q(a) C Fy:



A specific non-constructible angle

Let 0 = i—ﬂ = 20°. If we can construct 6, we can construct

« = cosf, and from trig identities, can show that « is a zero of
p(x) = 8x3 — 6x — 1. Can show p(x) is irreducible, so
[Q(): Q] = 3, which means that « is non-constructible.



