
Math 128B, Mon Apr 12

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: Ch. 23. Reading for Mon: Ch. 23.

I Next week: Groups are back. Review: Chs. 1, 4, 5, 7 (Sn, An,
Dn, Cn ≈ Zn).

I PS08 outline due tonight, full version due Mon.

I Problem session Fri Apr 16, 10am–noon.

I Second round of music:
https://forms.gle/v4Xta3E9u3At9sRV8



Recap: Degree of an extension

Definition
E an extension of F . To say that E has degree n over F , written
[E :F ] = n, means that dimE = n as a v.s. over F .

Definition
E an extension of F , a ∈ E . The degree of a over F is [F (a) :F ].

Theorem (Multiplicativity)

K finite extension of E , E finite extension of F . Then

[K :F ] = [K :E ][E :F ] <∞.

Key example:



Questions?















Algebraic over algebraic is algebraic

Theorem
If K is an alg ext of E and E is an alg ext of F , then K is an alg
ext of F .

Proof: Suppose a ∈ K . Because a is algebraic over E :



Subfield of algebraic elements

Theorem
E an extension of F , K the set of all elements of E that are
algebraic over F . Then K is a subfield of E .

Proof: Need to show that for a, b ∈ K , b 6= 0, we have
a + b, a− b, ab, ab−1 ∈ K .



Finite fields
Recall: Finite field of characteritic p is a vector space over Z/(p)
and therefore has order pe for some e ≥ 1. In fact:

Theorem
For each prime p and e ≥ 1, there exists a unique field of order
q = pe , denoted by GF (q); namely, GF (q) is the splitting field of
xq − x over Fp.

Proof: Uses existence and uniqueness of splitting fields.



A common confusion

Note that while GF (p) ≈ Zp, for e ≥ 2 and q = pe , GF (q) 6≈ Zq.

Example: GF (8) vs. Z8.



The multiplicative group of a finite field is cyclic
p prime, e ≥ 1, q = pe .

Theorem
The group of units of GF (q) is cyclic of order q − 1.

Proof: Define the exponent of a finite group G to be smallest
n ≥ 1 such that an = 1 for all a ∈ G .
Let G be the group of units of GF (q), |G | = q − 1. From
classification of finite abelian groups (!!), the exponent of

G ≈ Zp
n1
1
⊕ · · · ⊕ Zp

nk
k

is lcm(pn11 , . . . , p
nk
k ). This = q − 1 exactly when G is cyclic;

otherwise < q − 1.
Assume (by way of contradiction) that G is not cyclic.



Example: GF (9)
Construction, orders of elements, primitive element, factorizations
of x9 − x and x2 + 1.



Subfields of a finite field

p prime, e ≥ 1, q = pe .

Theorem
For each divisor d of e, GF (q) has exactly one subfield of order pd ,
and those are the only subfields of q.

Exmp: Subfields of GF (512).



Proof of subfields theorem
p prime, e ≥ 1, q = pe .

Theorem
For each divisor d of e, GF (q) has exactly one subfield of order pd ,
and those are the only subfields of q.

Proof: “Only” because GF (q) is a v.s. over a subfield K :

Existence: K =
{
α ∈ GF (q) | αpd = α

}
. Suppose GF (q)∗ = 〈β〉.



Ruler-and-compass constructions

Suppose we start w/a straightedge, compass, and a unit length:

I.e., from those starting ingredients, we can:

1. Intersect two lines

2. Intersect a circle and a line

3. Intersect two circles

Q: Which lengths can we construct? I.e., which points can we
capture as one of those types of intersections?



Constructible fields

Call α ∈ R constructible if we can construct a segment of length
α. Then

Theorem
The set of constructible numbers F is closed under +, −, ×, and
reciprocals; i.e., F is a subfield of R.

Proof: Suppose we have a and b constructed. To construct ab:



Square root extensions are possible

Theorem
F is closed under taking square roots.



Only square root extensions are possible

Suppose we follow a sequence of steps 1, . . . , n to construct a
given length. Let Fk be the field generated by all lengths
constructed up through step k (and F0 = Q). Because each
operation involves taking an intersection of two lines, a line and a
circle, or two circles, Fk+1 ⊆ Fk(

√
a) for some a ∈ Fk . By

multiplicativity of degree, we see that:

Theorem
[Fn :Q] = 2t for some t ≥ 0.

So for any constructible length a, considering Q ⊆ Q(a) ⊆ Fn:



A specific non-constructible angle

Let θ =
2π

18
= 20◦. If we can construct θ, we can construct

α = cos θ, and from trig identities, can show that α is a zero of
p(x) = 8x3 − 6x − 1. Can show p(x) is irreducible, so
[Q(α) :Q] = 3, which means that α is non-constructible.


