Math 128B, Mon Apr 12

- Use a laptop or desktop with a large screen so you can read these words clearly.
- ▶ In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: Ch. 23. Reading for Mon: Ch. 23. (C L .)
 - Next week: **Groups** are back. Review: Chs. 1, 4, 5, 7 (S_n , A_n , D_n , $C_n \approx \mathbf{Z}_n$).

- PS08 outline due tenight, full version due Mon.
- Problem session Fri Apr 16, 10am-noon.
- Second round of music: https://forms.gle/v4X+23E9u2A+9sRV8

Recap: Degree of an extension

Questions? I.P., degree of an alg elt Let is = deg of min poly. E=split field of x+1 over Q Express E=Q(x), find [E:Q]. Prove E = Q(N2,i).

Ans (1)= x4+1 $\pi \oplus \chi^{q} = -1$

To factor this 4th degree polynomial, find 4 roots.

W= 24

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

 $w^{4} = (e^{\frac{\pi}{4}i})^{\frac{\pi}{2}} = e^{\frac{\pi}{4}i} = -1$ Note: $W = \int \frac{1}{2} \int W^2 = i$ (trin) $(e^{i\theta})^2 = e^{2\theta i}$ $(e^{i\theta})^2 = e^{i\theta}e^{i\theta} = e^{i\theta+i\theta} = e^{i\theta+i\theta}$ $\frac{7}{(Like(-x)^2 = x^2)} \chi^{k} = (\chi x)^{k}$

So if 24=-1, (ia)4=-1 512 14=1. => Zerosof $x^{4}+1$ are $w_{1}w_{2}$ $=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i$ $\sum_{i} \left[\frac{\omega^{2}}{\omega} \right]_{i} = \sum_{i} \left[\frac{\omega^{2}}{\omega} \right]_{i} = \sum_{i$

a is NOT an element of $F \le \deg(a) > 1 \le [F(a):F] > 1$.

 $w^2 = i = i \in Q(\omega)$ $W = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} i , so <math>2w \in Q(w)$ 2w= N2-12: -(N2)(1+1) $=)\frac{2w}{1+1}\in Q(w)=)_{N2}\in Q(w)$ $= \mathcal{Q}(\mathcal{A}_{z_i}) = \mathcal{Q}(\omega)$

 $Q(\sqrt{z};) = Q(w)$ 2 = Q(w) $(\sqrt{z}) = Q(w)$ $(\sqrt{z}) = Q(w)$ 2k=2f=>h=2 => k=2 $Q(\Lambda S) \neq Q(\Lambda S_{1})$ l>1 x=2=2 SR ER

 $W = e^{\frac{\pi}{4}} \quad W^{4} = -1$ W Zerv of X4+1 $[Q(w):Q]=4, \Lambda \cdot g(w)=4$ SU X4+1 is min poly of W Cor x4+1 is irr over Q.

Algebraic over algebraic is algebraic

Theorem If K is an alg ext of E and E is an alg ext of F, then K is an alg ext of F. Fronf: Suppose $a \in K$. Because a is algebraic over E:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Why: Consequence of multiplicativity; see text for details.

Subfield of algebraic elements

Theorem

E an extension of F, K the set of all elements of E that are algebraic over F. Then K is a subfield of E.

Proof Need to show that for $a, b \in K$, $b \neq 0$, we have $a + b, a - b, ab, ab^{-1} \in K$.

-Why: Consider Fla, blover F.

Example: Consider the set K of all complex numbers that are algebraic over Q. By the Fundamental Theorem of Algebra, every polynomial equation has a solution in C, so K contains the all solutions to all polynomials equations with rational coeffs.

#-thy: Study K/Q=Q/Q ・ コ ト ・ 雪 ト ・ ヨ ト

Finite fields

Recall: Finite field of characteritic p is a vector space over $\mathbf{Z}/(p)$ and therefore has order p^e for some $e \ge 1$. In fact:

Theorem

For each prime p and $e \ge 1$, there exists a unique field of order $q = p^e$, denoted by GF(q); namely, GF(q) is the splitting field of $x^q - x$ over \mathbf{F}_p .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof: Uses existence and uniqueness of splitting fields.

A common confusion

Note that while $GF(p) \approx \mathbf{Z}_p$, for $e \geq 2$ and $q = p^e$, $GF(q) \not\approx \mathbf{Z}_q$.

Example: GF(8) vs. Z_8 .

The multiplicative group of a finite field is cyclic

p prime, $e \ge 1$, $q = p^e$.

Theorem

The group of units of GF(q) is cyclic of order q - 1.

Proof: Define the **exponent** of a finite group *G* to be smallest $n \ge 1$ such that $a^n = 1$ for all $a \in G$.

Let G be the group of units of GF(q), |G| = q - 1. From classification of finite abelian groups (!!), the exponent of

$$G \approx \mathsf{Z}_{p_1^{n_1}} \oplus \cdots \oplus \mathsf{Z}_{p_k^{n_k}}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

is $lcm(p_1^{n_1}, \ldots, p_k^{n_k})$. This = q - 1 exactly when G is cyclic; otherwise < q - 1.

Assume (by way of contradiction) that G is not cyclic.

Example: GF(9)

Construction, orders of elements, primitive element, factorizations of $x^9 - x$ and $x^2 + 1$.

Subfields of a finite field

p prime, $e \geq 1$, $q = p^e$.

Theorem

For each divisor d of e, GF(q) has exactly one subfield of order p^d , and those are the only subfields of q.

Exmp: Subfields of $GF(5^{12})$.

Proof of subfields theorem

p prime, $e \geq 1$, $q = p^e$.

Theorem

For each divisor d of e, GF(q) has exactly one subfield of order p^d , and those are the only subfields of q.

Proof: "Only" because GF(q) is a v.s. over a subfield K:

Existence:
$$\mathcal{K} = \left\{ \alpha \in GF(q) \mid \alpha^{p^d} = \alpha \right\}$$
. Suppose $GF(q)^* = \langle \beta \rangle$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Ruler-and-compass constructions

Suppose we start w/a straightedge, compass, and a unit length:

- I.e., from those starting ingredients, we can:
 - 1. Intersect two lines
 - 2. Intersect a circle and a line
 - 3. Intersect two circles

Q: Which lengths can we construct? I.e., which points can we capture as one of those types of intersections?

Constructible fields

Call $\alpha \in \mathbf{R}$ constructible if we can construct a segment of length $\alpha.$ Then

Theorem

The set of constructible numbers F is closed under +, -, \times , and reciprocals; i.e., F is a subfield of **R**.

Proof: Suppose we have *a* and *b* constructed. To construct *ab*:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Square root extensions are possible

Theorem

F is closed under taking square roots.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Only square root extensions are possible

Suppose we follow a sequence of steps $1, \ldots, n$ to construct a given length. Let F_k be the field generated by all lengths constructed up through step k (and $F_0 = \mathbf{Q}$). Because each operation involves taking an intersection of two lines, a line and a circle, or two circles, $F_{k+1} \subseteq F_k(\sqrt{a})$ for some $a \in F_k$. By multiplicativity of degree, we see that:

Theorem

 $[F_n: \mathbf{Q}] = 2^t$ for some $t \ge 0$.

So for any constructible length *a*, considering $\mathbf{Q} \subseteq \mathbf{Q}(a) \subseteq F_n$:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A specific non-constructible angle

Let $\theta = \frac{2\pi}{18} = 20^{\circ}$. If we can construct θ , we can construct $\alpha = \cos \theta$, and from trig identities, can show that α is a zero of $p(x) = 8x^3 - 6x - 1$. Can show p(x) is irreducible, so $[\mathbf{Q}(\alpha):\mathbf{Q}] = 3$, which means that α is non-constructible.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・