Math 128B, Mon Apr 12
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Use a laptop or desktop with a large screen so you can read
these words clearly.

In general, please turn off your camera and mute yourself.

Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

Please always have the chat window open to ask questions.
Reading for today: Ch. 22. Reading for Wed: Ch. 23.

Next week: Groups are back. Review: Chs. 1, 4,5, 7 (S, An,
D, Cn 7 Z5). Extra office hours
PS07 due tonight; PS08 outline due Wed night. today 1-2; regular
Problem session Fri Apr 16, 10am—noon. hours 2-3.

Second round of music:
https://forms.gle/v4Xta3E9u3At9sRV8
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i is also necessary to split x*2+4 b/c we need 2i and the rationals Q to split

N X ceT e
_______:i_g+4, and any field containing 2i and Q must also contain i.
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Recap: Degree of an extension

Definition /

E an extension of F. To say that E has degree n over F, written
[E : F] = n, means that dim E = n as a v.s. over F.

Theorem (Multiplicativity) —F':x [CQ (J}). &J-:'l
K finite extension of E, E finite extension of F. Then
K [K:F]=[K:E][E : F] < oc. 5/6
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Example Splitting field of x3 — 7 over Q
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Primitive element theorem  Any extension by finitely many algebraic
elements is = some F(c).

Generalizing Q&= & (,.f7 1 m> )
Theorem '

F a field with char F = 0 (and therefore F infinite). If a, b
algebraic over F, then there exists ¢ € F(a, b) such that

F(c) = F(a,b).

Idea of prooff ¢ = a+ db fof (basically) random d € F works.

» If p(x) is min poly of a over F, g(x) is min poly of b over F,
and r(x) = p(c — dx), there are only finitely many d € F that
allow g(x) and r(x) to have common zeros other than b.
Avoid those.

» That implies that the (irreducible) min poly s(x) of b over
F(c) has only one zero, and because F(c) has char 0, must

have s(x) = x — b (no repeated zeros in an irreducible), i.e.,
b e F(c).



Algebraic over algebraic is algebraic

Theorem

If K is an alg ext of E and E is an alg ext of F, then K is an alg
ext of F.

Proof: Suppose a € K. Because a is algebraic over E:



Subfield of algebraic elements

Theorem
E an extension of F, K the set of all elements of E that are
algebraic over F. Then K is a subfield of E.

Proof: Need to show that for a, b € K, b # 0, we have
a+b,a—b,ab,ab™! € K.



Example: Suppose F in Kin L and [L:F]=[L:K]. Prove K=F.



Finite fields

Recall: Finite field of characteritic p is a vector space over Z/(p)
and therefore has order p® for some e > 1. In fact:

Theorem

For each prime p and e > 1, there exists a unique field of order

q = p¢, denoted by GF(q),; namely, GF(q) is the splitting field of
x9 — x over Fp.

Proof: Uses existence and uniqueness of splitting fields.



A common confusion

Note that while GF(p) = Z,, for e > 2 and q = p®, GF(q) % Z,.

Example: GF(8) vs. Zg.



The multiplicative group of a finite field is cyclic
p prime, e > 1, g = p°.
Theorem
The group of units of GF(q) is cyclic of order g — 1.
Proof: Define the exponent of a finite group G to be smallest
n > 1 such that 3" =1 for all a € G.
Let G be the group of units of GF(q), |G| = g — 1. From
classification of finite abelian groups (!!), the exponent of

G%Zp{u @"'@ZPZk
is lem(py™, ..., pp¥). This = g — 1 exactly when G is cyclic;

otherwise < g — 1.
Assume (by way of contradiction) that G is not cyclic.



Example: GF(9)
Construction, orders of elements, primitive element, factorizations
of xX% — x and x2 + 1.



Subfields of a finite field
p prime, e > 1, g = p°.

Theorem
For each divisor d of e, GF(q) has exactly one subfield of order p?,
and those are the only subfields of q.

Exmp: Subfields of GF(5'2).



Proof of subfields theorem

p prime, e > 1, g = p°.

Theorem
For each divisor d of e, GF(q) has exactly one subfield of order p?,
and those are the only subfields of q.

Proof: "“Only subfields” first.



