Math 128B, Mon Apr 12

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: Ch. 22. Reading for Wed: Ch. 23.
- Next week: **Groups** are back. Review: Chs. 1, 4, 5, 7 (S_n , A_n , D_n , $C_n \approx \mathbf{Z}_n$).
- PS07 due tonight; PS08 outline due Wed night.
- Problem session Fri Apr 16, 10am-noon.
- Second round of music: https://forms.gle/v4Xta3E9u3At9sRV8

Extra office hours today 1-2; regular hours 2-3.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

x2+4 centre factory over (no real roots) Over (2(1); $\chi + 4 = (\chi + 2;)(\chi - 2;)$ i sufficient to Factor

i is also necessary to split x^2+4 b/c we need 2i and the rationals Q to split x^2+4 , and any field containing 2i and Q must also contain i.

 $\chi = \sqrt{7}$ $\psi = e^{-\pi i}$ Split $x^{b}-7$ -f(x) $=x^{b}-7$ w-=| $= (x - \alpha)(x - \omega \alpha)(x - \omega^2 \alpha)$ Mostofl $(x - w^{5}a)$ Pf $f(w'\alpha) = (w'\alpha)^{6} - 7$ = whi an-7=7-7=0.

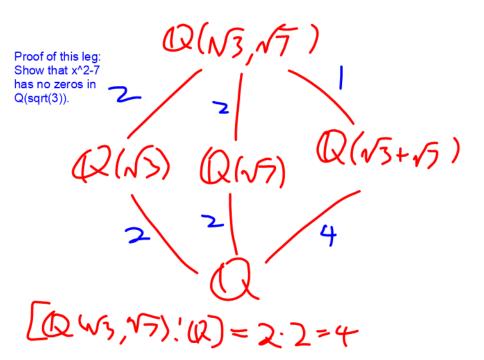
Recall: Thm F I7 parirr over F FT phas zeroin field FLY/Kari like Qa) And: [E: F]=degp Ex Adjoin NSTOFCO FEXT/ (2-3)

Recap: Degree of an extension

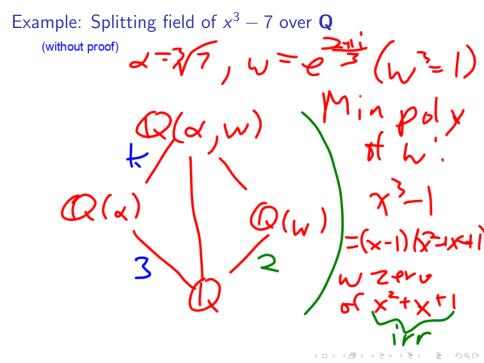
- SU E is V.S. over F Definition E an extension of F. To say that E has **degree** n over F, written [E:F] = n, means that dim E = n as a v.s. over F. $E \left[Q(s)(a) = \right]$ Theorem (Multiplicativity) K finite extension of E, E finite extension of F. Then - WC iszero $[K:F] = [K:E][E:F] < \infty.$ (K:E) CETEI

Find Log over Q Example: Q(sqrt(3)+sqrt(7)) $\sqrt{3}+\sqrt{7} \in \mathbb{Q}(\sqrt{3},\sqrt{7},\sqrt{2}) \rightarrow \mathbb{K}$)I V Knuh! [H: R]=4, Jasis {1, ~5, ~7, ~21} |=| previously proven x=3+x2+7=10+121 $\chi^{+}=100+20\pi (1+2)=12|+20\pi (2)$ ~4-20~=121+21~21-210-21~21

=-79 $x^{7} = 10\sqrt{5} + 10\sqrt{5} + 3\sqrt{7} + 7\sqrt{3}$ = 17~5+13~7 RREF! {Ixxx2,x3} lin inA. >0 hinpoly (x)= x4-20x2+79 =)[Q(x):Q)=4



 $[Q(N3, \sqrt{3})! Q(\sqrt{3} + \sqrt{5})]$ = | $SO(R(r_{3},r_{3})=Q(r_{3}+r_{7})$ J.e. Bis & rather Re. of powers of (N3+N5)



[Q(x,w):Q]=3K= [Q(u, u): Q(u)] (R(u): k)= (Q(x, w):Q(w)) 2 , So Zdirk. $\mathbf{E}_{n+1} = \{\mathbf{R}(\mathbf{x}_{n}, \mathbf{w}): \mathbf{R}(\mathbf{z}_{n})\}$ = deg of min poly of wover Q(a) ≤ 2 = 1/1 = 2.

Primitive element theorem

Any extension by finitely many algebraic elements is = some F(c).

Theorem

F a field with char F = 0 (and therefore F infinite). If a, b algebraic over F, then there exists $c \in F(a, b)$ such that F(c) = F(a, b).

Idea of proof. c = a + db for (basically) random $d \in F$ works.

- If p(x) is min poly of a over F, q(x) is min poly of b over F, and r(x) = p(c − dx), there are only finitely many d ∈ F that allow q(x) and r(x) to have common zeros other than b. Avoid those.
- That implies that the (irreducible) min poly s(x) of b over F(c) has only one zero, and because F(c) has char 0, must have s(x) = x − b (no repeated zeros in an irreducible), i.e., b ∈ F(c).

Algebraic over algebraic is algebraic

Theorem

If K is an alg ext of E and E is an alg ext of F, then K is an alg ext of F.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof: Suppose $a \in K$. Because *a* is algebraic over *E*:

Subfield of algebraic elements

Theorem

E an extension of F, K the set of all elements of E that are algebraic over F. Then K is a subfield of E.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof: Need to show that for $a, b \in K$, $b \neq 0$, we have $a + b, a - b, ab, ab^{-1} \in K$.

Example: Suppose F in K in L and [L:F]=[L:K]. Prove K=F.

Finite fields

Recall: Finite field of characteritic p is a vector space over $\mathbf{Z}/(p)$ and therefore has order p^e for some $e \ge 1$. In fact:

Theorem

For each prime p and $e \ge 1$, there exists a unique field of order $q = p^e$, denoted by GF(q); namely, GF(q) is the splitting field of $x^q - x$ over \mathbf{F}_p .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof: Uses existence and uniqueness of splitting fields.

A common confusion

Note that while $GF(p) \approx \mathbf{Z}_p$, for $e \geq 2$ and $q = p^e$, $GF(q) \not\approx \mathbf{Z}_q$.

Example: GF(8) vs. Z_8 .

The multiplicative group of a finite field is cyclic

p prime, $e \ge 1$, $q = p^e$.

Theorem

The group of units of GF(q) is cyclic of order q - 1.

Proof: Define the **exponent** of a finite group *G* to be smallest $n \ge 1$ such that $a^n = 1$ for all $a \in G$.

Let G be the group of units of GF(q), |G| = q - 1. From classification of finite abelian groups (!!), the exponent of

$$G \approx \mathsf{Z}_{p_1^{n_1}} \oplus \cdots \oplus \mathsf{Z}_{p_k^{n_k}}$$

is $lcm(p_1^{n_1}, \ldots, p_k^{n_k})$. This = q - 1 exactly when G is cyclic; otherwise < q - 1.

Assume (by way of contradiction) that G is not cyclic.

Example: GF(9)

Construction, orders of elements, primitive element, factorizations of $x^9 - x$ and $x^2 + 1$.

Subfields of a finite field

p prime, $e \geq 1$, $q = p^e$.

Theorem

For each divisor d of e, GF(q) has exactly one subfield of order p^d , and those are the only subfields of q.

Exmp: Subfields of $GF(5^{12})$.

Proof of subfields theorem

p prime, $e \geq 1$, $q = p^e$.

Theorem

For each divisor d of e, GF(q) has exactly one subfield of order p^d , and those are the only subfields of q.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof: "Only subfields" first.