
Math 128B, Mon Apr 12

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today: Ch. 22. Reading for Wed: Ch. 23.

I Next week: Groups are back. Review: Chs. 1, 4, 5, 7 (Sn, An,
Dn, Cn ≈ Zn).

I PS07 due tonight; PS08 outline due Wed night.

I Problem session Fri Apr 16, 10am–noon.

I Second round of music:
https://forms.gle/v4Xta3E9u3At9sRV8









Recap: Degree of an extension

Definition
E an extension of F . To say that E has degree n over F , written
[E : F ] = n, means that dimE = n as a v.s. over F .

Theorem (Multiplicativity)

K finite extension of E , E finite extension of F . Then

[K : F ] = [K : E ][E : F ] <∞.











Example: Splitting field of x3 − 7 over Q





Primitive element theorem

Generalizing Q(
√

3 +
√

5):

Theorem
F a field with char F = 0 (and therefore F infinite). If a, b
algebraic over F , then there exists c ∈ F (a, b) such that
F (c) = F (a, b).

Idea of proof: c = a + db for (basically) random d ∈ F works.

I If p(x) is min poly of a over F , q(x) is min poly of b over F ,
and r(x) = p(c − dx), there are only finitely many d ∈ F that
allow q(x) and r(x) to have common zeros other than b.
Avoid those.

I That implies that the (irreducible) min poly s(x) of b over
F (c) has only one zero, and because F (c) has char 0, must
have s(x) = x − b (no repeated zeros in an irreducible), i.e.,
b ∈ F (c).



Algebraic over algebraic is algebraic

Theorem
If K is an alg ext of E and E is an alg ext of F , then K is an alg
ext of F .

Proof: Suppose a ∈ K . Because a is algebraic over E :



Subfield of algebraic elements

Theorem
E an extension of F , K the set of all elements of E that are
algebraic over F . Then K is a subfield of E .

Proof: Need to show that for a, b ∈ K , b 6= 0, we have
a + b, a− b, ab, ab−1 ∈ K .





Finite fields
Recall: Finite field of characteritic p is a vector space over Z/(p)
and therefore has order pe for some e ≥ 1. In fact:

Theorem
For each prime p and e ≥ 1, there exists a unique field of order
q = pe , denoted by GF (q); namely, GF (q) is the splitting field of
xq − x over Fp.

Proof: Uses existence and uniqueness of splitting fields.



A common confusion

Note that while GF (p) ≈ Zp, for e ≥ 2 and q = pe , GF (q) 6≈ Zq.

Example: GF (8) vs. Z8.



The multiplicative group of a finite field is cyclic
p prime, e ≥ 1, q = pe .

Theorem
The group of units of GF (q) is cyclic of order q − 1.

Proof: Define the exponent of a finite group G to be smallest
n ≥ 1 such that an = 1 for all a ∈ G .
Let G be the group of units of GF (q), |G | = q − 1. From
classification of finite abelian groups (!!), the exponent of

G ≈ Zp
n1
1
⊕ · · · ⊕ Zp

nk
k

is lcm(pn11 , . . . , pnkk ). This = q − 1 exactly when G is cyclic;
otherwise < q − 1.
Assume (by way of contradiction) that G is not cyclic.



Example: GF (9)
Construction, orders of elements, primitive element, factorizations
of x9 − x and x2 + 1.



Subfields of a finite field

p prime, e ≥ 1, q = pe .

Theorem
For each divisor d of e, GF (q) has exactly one subfield of order pd ,
and those are the only subfields of q.

Exmp: Subfields of GF (512).



Proof of subfields theorem

p prime, e ≥ 1, q = pe .

Theorem
For each divisor d of e, GF (q) has exactly one subfield of order pd ,
and those are the only subfields of q.

Proof: “Only subfields” first.


