## Math 128B, Mon Apr 05

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: Ch. 21.
- Review session tonight, 3pm (recorded to YouTube). hours link!
- **Exam 2 on Wed Apr 07**, on Chs. 15–19 (PS04–06).

Office

Algebraic vs. transcendental extensions

*E* extension of a field *F*,  $a \in E$ .

If f(a) = 0 for some nonzero  $f(x) \in F[x]$ , we say *a* is **algebraic** over *F*; otherwise, we say *a* is **transcendental** over *F*.

If every  $a \in E$  is algebraic over F, we say E is an **algebraic** extension of F; otherwise we say E is a **transcendental extension** of F.

If E = F(a) for some (single)  $a \in E$ , we say that E is a simple extension of F.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

## The minimal polynomial of $a \in E$

**Theorem:** *E* extension of *F*,  $a \in E$ .

Field of rational functions in If a transcendental over F, then  $F(a) \approx F(x)$ . the variable x

If a algebraic over F, there exists a monic  $p(x) \in F[x]$  such that:

•  $F(a) \approx F[x]/\langle p(x) \rangle;$ 

 p(x) is the monic polynomial of smallest degree such that p(a) = 0;

▶ If  $f(x) \in F[x]$  and f(a) = 0, then p(x) divides f(x) in F[x].

Why (algebraic case): Let *I* be the set of all f(x) such that f(a) = 0. *I* is the kernel of a homomorphism, so  $I = \langle p(x) \rangle$  and p(x) is irreducible.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへぐ

Ex (VIOpf) F = Qa= VZ: min puly is x - 2 Q(~=)~Q(~]/(x'-2)  $W = e^{2\pi i} \min \chi^{2} + \chi + 1$   $70^{1}\chi = \chi^{3} - 1$  $Q(\omega) \simeq Q(x)/\langle x+x+i \rangle$ 

## Degree of an extension

E an extension of F.

Recall that the whole point of abstract vector spaces is that E is a v.s. over F. To say that E has **degree** n over F, written [E : F] = n, means that dim E = n as a v.s. over F.

If [E : F] is finite, then we say E is a **finite extension of** F; otherwise, E is an **infinite extension of** F.

**Examples:** (without proof) Q(15):Q | = <  $\mathbb{Q}(w)$ ;  $\mathbb{Q} = 2$ - 日本 本語 本 本 田 本 王 本 田 本

E=Q(37) as a V.S. over Q! We'lls shad 1, 7'3, 72,3 } is a basis tor E over Q So! every elt of Emritten hrighely as a+b. 7 3+ c7 23  $(a|b, C \in \mathbb{Q})$ 

# A key class of examples

Thm If p(x) irreducible over F,  $E = F[x]/\langle p(x) \rangle$ , then  $[E:F] = \deg p(x).$ 



Proof:  $I = \langle \rho(x) \rangle \ll = \chi + I$   $h = l \leq \rho(x) \qquad \ll = \chi^{k} + I$ Claim {1, x, --, x 1-' } is a basis for E over F=7(E:F] Span For f(x)+IEFGVI = N f(x)=q(x)p(x)+r(x) degr<deg

So mit p(x), f(x)+1=r(x)+2  $= r(\alpha).$  $I_{P, -}(x) = C_{0} + C_{1} + C_{1}$ for some ci EF. Soll,.., any spans. (li) spose itF Let  $f(x) = c_{0} + (x + \dots + c_{n}, x) \in F(x)$ 

f(a)=0. But p is minpoly dd, so p(y) div f(x), deg f < deg p=7f(x)=0.  $O \subset (((y)) = ((y)) = ((y))$  $Q(z) \approx Q[x]/\langle x-z \rangle$  $\simeq Q$ (E,F)=1 <=> E=F (E=FG)/(p(xi)) <=> deg p= /



To find min poly of (6-535):  $\mp = 0(35)$  1=1 a=6-537  $a^{2}=36-6037+25(7^{2/3})$  -549 450a>=216-3(180)71/3+3(150)73 -125(7) =-659-540(713)+450(72")

Proof of Multiplicativity として、「「「「「」」 「」」。 「」」 F MULTIPLICATIVITY Spose {x, ..., x, basistor Kover E {P1, ..., Pd) " ' EoverF Want a basis for Kovar FN1 nd elts. < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

azB1, ~, azB1 arpi, -, an Bay Show B spars K (over F) linind lover F).

Example:  $\mathbf{Q}(\sqrt{3},\sqrt{5})$  and  $\mathbf{Q}(\sqrt{3}+\sqrt{5})$   $\mathbf{V}_{\mathbf{V}}$  $\begin{array}{c} Q(N3, rs) = t & Basis for t / F; \\ z & (1, N5) \\ Q(N3) = E & (1, N3, N5, N15) \\ z & (1, N3) \\ z & (1, N3) \\ z & (1, N3) \\ S & (Every elt) \\ Q &= F & of Q(N3, N5) \end{array}$ is R+bV3+CN5+AVIS uniquely. (a,b,c,1(5))

Min poly of v3+N5=A |=|  $a = \sqrt{3} + \sqrt{5}$ ~= 3+2N15+5-8+2N15 イ= ろいろトろ(ろ)から+ろいろち+ろイケ = 124732N15

# Example: Splitting field of $x^3 - 7$ over **Q**

## Primitive element theorem

Generalizing  $\mathbf{Q}(\sqrt{3}+\sqrt{5})$ :

#### Theorem

F a field with char F = 0 (and therefore F infinite). If a, b algebraic over F, then there exists  $c \in F(a, b)$  such that F(c) = F(a, b).

Idea of proof: c = a + db for (basically) random  $d \in F$  works.

- If p(x) is min poly of a over F, q(x) is min poly of b over F, and r(x) = p(c − dx), there are only finitely many d ∈ F that allow q(x) and r(x) to have common zeros other than b. Avoid those.
- That implies that the (irreducible) min poly s(x) of b over F(c) has only one zero, and because F(c) has char 0, must have s(x) = x − b (no repeated zeros in an irreducible), i.e., b ∈ F(c).

Algebraic over algebraic is algebraic

Theorem

If K is an alg ext of E and E is an alg ext of F, then K is an alg ext of F.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

**Proof:** Suppose  $a \in K$ . Because *a* is algebraic over *E*:

## Subfield of algebraic elements

#### Theorem

E an extension of F, K the set of all elements of E that are algebraic over F. Then K is a subfield of E.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

**Proof:** Need to show that for  $a, b \in K$ ,  $b \neq 0$ , we have  $a + b, a - b, ab, ab^{-1} \in K$ .