Math 128B, Wed Mar 17

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: Ch. 20.
- PS06 outline due Wed night, full version due Mon.
- Problem session Fri Mar 19, 10am–noon.
- Exam 2 in one week, on Chs. 15–19 (PS04–06). Review session Mon night (recorded to YouTube).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Recap of vector spaces

(V,+) ab gp; a(v+w)=av+aw, (a+b)v = av + bv; (ab)v=a(bv), 1v=v.

- Anything that satisfies the axioms is a vector space over F.
- Primary case: An extension field of F is a vector space over F.
- If a vector space has a finite basis, then its dimension is well-defined.
- ► A maximal linearly independent set is a basis (PS06).
- A finite field of characteristic p has Z_p as a subfield, so is a vector space over Z_p.
 - Other extension fields we'll study will be finite-dimensional by construction or by assumption.

, (Ch 13): If R ring with 1, char(R) = # of times add 1 to itself to get 0. char(R) = 0 means that you never get 0 when add 1 to itself.

Thm: Any field has characteristic 0 or characteristic p (p prime).

Extension fields and how to construct them

Definition

To say that E is an **extension field** of F means that E is a field and F is a subfield of E.

Theorem

F a field, $f(x) \in F[x]$, deg f > 0. Then there exists an extension field *E* of *F* such that *f* has a zero in *E*. Specifically, if p(x) is irreducible, then *p* has a zero in $F[x]/\langle p(x) \rangle$.

Proof when p(x) **irreducible:** Let $I = \langle p(x) \rangle$ and let $\alpha = x + I \in F[x]/I$. Because p(x) irreducible, E = F[x]/I is a field. Let phi: $F[x] \rightarrow F[x]/I$ be the natural homomorphism. Because the intersection of F and ker(phi) is 0, phi is injective on F. So we can think of F as a subfield of E. So we can think of p(x) as a polynomial in E[x].

₽(**∠**) $= C_h \alpha^n + \cdots + C_i \alpha + C_b$ $= \zeta_{n}(x+1)^{n}+\cdots+\zeta_{n}(x+1)rC_{n}$ = $(C_{n} X^{h} + 1) + \cdots + (C_{l} X + 1) + C_{0}$ $= C_n x^n + \cdots + C_i \times + C_i + I$ $= p(x) + I = p(x) + \langle p(x) \rangle$ = $(+ \langle p(x) \rangle)$ which is the zero element of E. (••)

Recap/clarification/computation

Suppose p(x) irreducible in F[x], deg p = n > 1. Let $I = \langle p(x) \rangle$. How can we compute in F[x]/I = [c, c, c], of F

By Division Thm, if we divide $f(x) \in F[x]$, there exists **unique** $q, r \in F[x]$ such that f(x) = q(x)p(x) + r(x) and deg $r < \deg p$. Follows that every element of F[x]/I can be expressed uniquely in the form r(x) + I with deg $r < \deg p$.

So if we let $\alpha = x + I$, then every element of F[x]/I can be expressed uniquely in the form $r(\alpha)$ with deg $r < \deg p$. We may therefore write $F(\alpha) = F[x]/I$ and say that $F(\alpha)$ is F, adjoining a root of p(x).

Note: $F(\alpha)$ is a v.s. over F, and since any element of $F(\alpha)$ can be written uniquely in the form $c_{n-1}\alpha^{n-1} + \cdots + c_1\alpha + c_0$, $\{\alpha^{n-1}, \ldots, \alpha, 1\}$ is a basis for $F(\alpha)$, and dim $F(\alpha) = n = \deg p$.

A finite example

How can you compute in $Z_2(\alpha)$, where α is a root of $x^4 + x + 1$?

e (Lex)

 $\left(\mathbb{Z}_{2}(x)=\mathbb{Z}_{2}(x)/\langle x^{*}+x+1\rangle\right)$

What is Z (a)? Elts "Polys in ~" of leg 53 : (3x)+ (2x2+ (x+ Co C3, C2, C1, L0 62, Defining rel'n of Z(x): 24+2+1=0 ◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

So $x^{4} = -x - l = x + l \begin{pmatrix} + l = -l \\ l \neq Z_{2} \end{pmatrix}$ and can reduce any poly leg > 3 by repeating 24=2+1. Dimension {x3,x2,x,1) is a basis for Z (K) over Z2. So $d'_{III}(\mathbb{Z}_{2}(x)) = 4$ GF(16) (There are 24=16 elts of Z(d))

Splitting fields

E an extension field of *F*, $a_i \in E$. (intersection of all possible)

Definition

 $F(a_1, \ldots, a_k)$ is the smallest subfield of E containing a_1, \ldots, a_k . Think: $F(a_1, \ldots, a_k)$ is the **field** generated by F and a_1, \ldots, a_k .

Definition I.e., smallest subset of E containing F, a_1,...,a_k that is closed under +, -, mult, division.

$$f(x) \in F[x]$$
, deg $f = k > 0$.

To say f splits in E means that

$$f(x) = a(x - a_1) \cdots (x - a_k)$$

for some a_1, \dots, a_k . $\in F$
If also $E = F(a_1, \dots, a_k)$, we say that E is a **splitting field**
for f over F .

Examples

- C is a splitting field of $x^2 + 1 = (x + i)(x i)$ over **R**.
- ▶ $\mathbf{Q}(i) = \{a + bi \mid a, b \in \mathbf{Q}\}$ is a splitting field of $x^2 + 1 = (x + i)(x i)$ over \mathbf{Q} .
- ► $Z_3(i) = \{a + bi \mid a, b \in Z_3\}$ is a splitting field of $x^2 + 1 = (x + i)(x i)$ over x

Z₂ is a splitting field of $x^2 + 1 = (x + 1)^2$ over **Z**₂.

Goal for rest of today: Show that we can replace each "a splitting field" with "the splitting field."

I.e., we will show that every polynomial in F[x] has a splitting field in F[x], and that any two splitting fields of f(x) over F are isomorphic.

Non-example x=35 Q(x) = E, ext of Q. Thruc IIT! $\chi^{3} = 5 = \chi^{3} - d^{3} \qquad (\chi^{2} - 4\chi^{2})$ = $(\chi - \chi) (\chi^{2} + \chi \chi + d^{2})$ IrroverE. So x-5 doesn't spirt over E. Splitting fitth is extole...

Why do we care about splitting fields?

The basic question of the entire semester is:

Solve $f(x) = a_n x^n + \dots + a_1 x + a_0 = 0$ over *F*.

IDEA: Instead of looking at the (finite) solution set a_1, \ldots, a_k to f(x) = 0, study the splitting field $F(a_1, \ldots, a_k)$.

We can use then algebraic structures like fields, vector spaces (!), and finite nonabelian groups (!?!) to learn more about $F(a_1, \ldots, a_k)$, and therefore, about a_1, \ldots, a_k .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Existence of splitting fields

Theorem $f(x) \in F[x]$, deg f > 0. Then there exists a splitting field E for f(x) over F. Why:

Adjoining one root

Theorem

F a field, $p(x) \in F[x]$ irreducible over F. If E an extension of F, $a \in E$, and p(a) = 0, then

 $F(a) \approx F[x]/\langle p(x) \rangle$.

Claim 1: Kernel of substitution homomorphism $\varphi : F[x] \to F(a)$ given by $\varphi(f(x)) = f(a)$ is:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Claim 2: Image of φ is:

Uniqueness of splitting fields

From previous result:

Corollary

 $p(x) \in F[x]$ irreducible over F. If a is a zero of p(x) in some extension E of F and b is a zero of p(x) in some extension E' of F, then $F(a) \approx F[x]/\langle p(x) \rangle \approx F(b)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Long story short, carefully applying the above corollary and induction gives:

Corollary

Any two splitting fields of $f(x) \in F[x]$ are isomorphic.

Roots of unity

Picture of the *n*th roots of unity in the complex plane:

Example: The splitting field of $x^3 - 7$ Generators, basis, dimension: p(x) $\omega = \sqrt{7}$ $\omega = \sqrt{7}$ $x^{-7} - 7 = (x - x)(x^{-1} + ax + ax^{-2})$ =(x-x)(x-wd)(x-w'x)& Split of x3-7 is Q(a, w)=K) -> p splits over K -> Field gen't by d, wx, W2 contains a, W2 = w => K.

ふして 山田 ふぼやえばや 山下