Math 128B, Mon Mar 22

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: Ch. 20. Reading for Wed: Ch. 21.
- PS06 due tonight. Late deadline Fri Mar 26.
- Exam 2 on Wed Apr 07, on Chs. 15–19 (PS04–06). Review session Mon Apr 05 (recorded to YouTube).

Recap

Theorem F a field, $p(x) \in F[x]$ irreducible. Then p has a zero in $F[x]/\langle p(x)\rangle = F(x), \prec root of p(x)$ $f(x) \in F[x], \deg f = k > 0$ -some ext To say f splits in E means that nt F $f(x) = a(x - a_1) \cdots (x - a_k)$ for some $a_1, \ldots, a_k \in \mathcal{F}$ • If also $E = F(a_1, \ldots, a_k)$, we say that E is a **splitting field** for f over F. **Example:** If $\omega = e^{2\pi i/3}$, $\alpha = \sqrt[3]{7}$, then splitting field of $x^3 - 7$ over **Q** is $\mathbf{Q}(\alpha, \alpha\omega, \alpha\omega^2) = \mathbf{Q}(\alpha, \omega)$.

Why do we care about splitting fields?

The basic question of the entire semester is:

Solve
$$f(x) = a_n x^n + \cdots + a_1 x + a_0 = 0$$
 over F .

IDEA: Instead of looking at the (finite) solution set f(x) = 0, study the splitting field f(x) = 0, f(x) = 0, study the splitting field f(x) = 0, f(x) = 0, f(x) = 0, study the splitting field f(x) = 0, f(

(日) (日) (日) (日) (日) (日) (日) (日)

Show that we can replace each "a splitting field" with "the splitting field."

I.e., we will show that every polynomial in F[x] has a splitting field in F[x], and that any two splitting fields of f(x) over F are isomorphic.

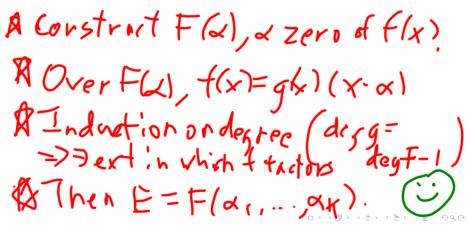
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Over F

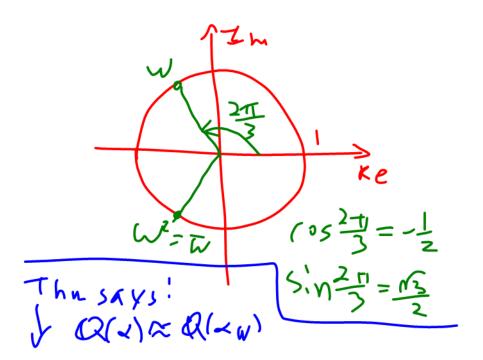
Existence of splitting fields

Theorem $f(x) \in F[x]$, deg f > 0. Then there exists a splitting field E for f(x) over F.

Why:



Over Q(2). f(x)=(x-d)(-x+dx+d)Over Q(d, w)=Q(d, w): (w= a) $f(x) = (x - d)(x - dw)(x - dw^2)$ Q(v, whis sy. field forf. W=- 2+ 12: W=W



Adjoining one root (towards uniqueness of splitting fields)

Theorem

F a field, $p(x) \in F[x]$ irreducible over F. If E is an extension of F, $a \in E$, and p(a) = 0, then

 $F(a) \approx F[x]/\langle p(x) \rangle$. this field is independent

Point: The structure of of which zero you pick!

Claim 1: Kernel of substitution homomorphism $\varphi : F[x] \to F(a)$ given by $\varphi(f(x)) = f(a)$ is: kerger $\varphi \sim \langle p(x) \rangle$ p(a)=0, so pekerp kerp ideal of F(x)=>kerp; S. g(x) div p(x) => g(x) is used p(x) If gis a unit, SalaberTy

const polys areny in Kerg. (Ig. MZ i Img=F(a) Plug in a, So imp $\leq F(a)$ But $\varphi(x) = a$, and imp is a fielt, $(1-T) F(a) \approx F[x]/(p(x))$

Uniqueness of splitting fields

From previous result:

Corollary

 $p(x) \in F[x]$ irreducible over F. If a is a zero of p(x) in some extension E of F and b is a zero of p(x) in some extension E' of F, then $F(a) \approx F[x]/\langle p(x) \rangle \approx F(b)$.

Long story short, carefully applying the above corollary repeatedly (or inductively) gives:

Corollary

Any two splitting fields of $f(x) \in F[x]$ are isomorphic.

A thing you weren't even worried about, but...

Suppose f(x) irreducible over F, E splitting field of f(x) over F.

Weird question: Is it possible that f(x) has repeated roots in E_i^2 ? red in Fly) **Example:** Consider $E = Z_5(t)$, $F = Z_5(t^5)$, $f(x) = x^5 - x^5$ I, seZs(t) Same, but +1=x5-5x4+12+2-102+ = 25-15 + 527 So f(x) has one zero, t, mylt sin E.

Surprise! The derivative If $f(x) = a_n x^n + \dots + a_2 x^2 + a_1 x + a_0 \in F[x]$, we define $f'(x) = na_n x^{n-1} + \dots + 2a_2 x + a_1$.

Fact: Sum rule, constant multiple rule, and product rule all work for derivative in F[x]. **Theorem:** $f(x) \in F[x]$. Then TFAE:

It f(x)=(x-~) g(x) in E[x]

then $f'(x) = 2(x \cdot 2)g(x) + |x \cdot x|^2 g'(x)$ So $(x \cdot d)$ is r(D of f, f' in E[x].

1. f has a multiple zero in some extension E of F.

2. gcd(f(x), f'(x)) has degree ≥ 1 .

Pf (1)=>(2)

=> gfd(f,f') in F[x] can the]; d/L'it grd (f,f')=1 => p(x) + q(x) + q(x) + 1(x) = 1KLA X X WOULD Livide both sides, contra.

When do irreducibles have multiple zeros?

Suppose f(x) irreducible over F.

- If char F = 0, then f has no multiple zeros.
- If char F = p, then f has multiple zeros iff f(x) = g(x^p) for some g ∈ F[x].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof:

Perfect fields

Definition

F is **perfect** when either char F = 0 or char F = p and $F^p = F$.

Theorem

Let F be a finite field of characteristic p. Then F is perfect. **Proof:** Follows from fact of independent interest:

Claim: The map $\rho: F \to F$ given by $\rho(x) = x^{\rho}$ is an automorphism of F.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

No multiple zeros over a perfect field

Theorem

If F is perfect and $f(x) \in F[x]$ irreducible, then f does not have multiple zeros in any extension of F

Proof: Characteristic 0 case done, so suppose char F = p and F is perfect.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What happens over imperfect fields?

Theorem

f(x) irreducible over F and E the splitting field of f over F. Then all zeros of f have the same multiplicity.

Corollary

f(x) irreducible over F and E the splitting field of f over F. Then there exists n such that

$$f(x) = (x - a_1)^n \dots (x - a_t)^n,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where a_1, \ldots, a_t are distinct elements of E. Example, again: $E = Z_5(t)$, $F = Z_5(t^5)$, $f(x) = x^5 - t^5$.