Math 128B, Wed Mar 10

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Reading for Mon: Ch. 19. (New arc in the book: Fields!)
- PS05 outline due tonight, full version due Mon Mar 15.
- Problem session Fri Mar 12, 10am–noon.

prine gairab=> Pis The big picture a irreducible: If a = bc, then one of b,c is a unit. Prime vs. irreducible: Hways' prime => irreducible PID irr=>prime b/ctact not anic Euclidean domain, PID, UFD: Can factor into FD => PI Every irreducible Converses are false: E.g., Z[x] is a UFD but not a PID. is prime

< ロ > < 同 > < 回 > < 回 >

Unique factorization domains (UFDs)

Definition

D a UFD means *D* is a domain such that for $a \in D$, $a \neq 0$, *a* not a unit:

We have

$$a=p_1\ldots p_k$$

for some irreducibles p_i .

If

$$a=p_1\ldots p_k=q_1\ldots q_s$$

for some irreducibles p_i , q_j , then k = s and can rearrange factors s.t. p_i and q_i are associates.

D=Z[vz, 42, 2, 1/2, ...

Note: How could a factorization not exist?

Ascending chain condition (ACC)

PID implies UFD: Factorization exists

Suppose $a \in D$, D a PID, $a \neq 0$, a not a unit, a doesn't factor into irreducibles.

one reducible, $a = b_1 b_2$ one reducible $C = d_1 d_2$ hen. $\langle n \rangle < \langle b \rangle < \langle c \rangle$ is an infinite ascending chain of ideals that never terminates. Contradiction. ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

PID implies UFD: Factorization unique

Suppose $a \in D$, D a PID, $a \neq 0$, a not a unit, and ind ont $a = p_1 \dots p_k = q_1 \dots q_s,$ where p_i and q_i are irreducibles. Since irreducibles are prime. K>1: It assume for Hirr. $A = p_1 - p_{k-1} P_{k} = q_1 - 1s$.

1, B/c irrs prime pr dive q. 1>, PHdivone of q's, Say PHAirs 95. 95=PKU; BK gsirn, Pt not 4 unit. 50! Pi PK-18K= (1 95-1 Phu $= p_1 \cdots p_{k-1} = (nq_1)q_2 \cdots q_{s-1}$

By ind, H-1=5-1, and can rearrange as claimped.

If we allow units to be irreducible, the statement of unique factorization is no longer true:

12=2.2.3=1.2.2.3 =(-1)(-1)223

So we choose the definition of irreducible to avoid this problem.

Euclidean domains

Definition

Let R be a domain. A size function on R is a function $\sigma: R \to \mathbf{Z} \cup \{-\infty\}$ such that for all nonzero $r \in R$, $\sigma(r) \ge 0$ and $\sigma(r) > \sigma(0).$ - m(v)=0 or -00

Definition

A **Euclidean domain** is a domain R with a size function σ that satisfies the following axiom: For $a, d \in R, d \neq 0$, there exist $q, r \in R$ such that

with $\sigma(r) < \sigma(d)$. a = qd + rExamples: **Z**, with $\sigma(a) = |a|$. ▶ **F**[x], with $\sigma(f(x)) = \deg f(x)$. (Take deg $0 = -\infty$.) ► $Z[i] = \{a + bi \mid a, b \in Z\}$, with $\sigma(a + bi) = a^2 + b^2$. (日) (日) (日) (日) (日) (日) (日) (日)

ED implies PID

Theorem If D is a Euclidean domain, then D is a PID. (そのり=くのう) Proof: DISED) I ideal of D, It (0) hoosek=0 In I w/ smallest o(d). TAFIED=) a= (1+r, o(r) kuf A) B/c d has smallest possible size among nonzero elements of I, we must have r=0. or somp. < □ > < 同 > < 三 >

Z and F[x] are the same

F[x]Ζ $\sigma(a) = |a|$ $\sigma(f(x)) = \deg f$ Euclidean domain: Euclidean domain: a = dq + r, a = dq + r, |r| < |d| $\deg(r) < \deg(d)$ PID: PID: $I = \langle d \rangle$, $I = \langle d(x) \rangle$ $\deg d(x)$ min over nonzero |d| min over nonzero UFD: UFD: Every $a \neq 0$ is a unique Every $a \neq 0$ is a unique product of primes product of irreducibles (up to assoc and ordering) (up to assoc and ordering)

Unique factorization in $\mathbf{Z}[x]$

Theorem

Every nonzero non-unit $f(x) \in \mathbf{Z}[x]$ can be written uniquely as

$$f(x) = b_1 b_2 \cdots b_s p_1(x) p_2(x) \cdots p_m(x),$$

where the b_i are prime integers and the $p_j(x)$ are primitive and irreducible over **Q**.

As usual, uniqueness is up to associates (i.e., $\pm 1)$ and order of the factors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Why unique factorization works in Z[x]

Enough to prove two things (of independent interest):

1. The irreducible elements of Z[x] are prime integers and primitive polynomials that are irreducible over Q.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

2. Every irreducible of Z[x] is prime in Z[x].

Generalization

Theorem If D is a UFD, then D[x] is a UFD. Most notably: F[x, y] is a UFD (but not a PID), and so is F[x, y, z], F[w, x, y, z], etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00