Math 128B, Mon Mar 01

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Reading for today and Wed: Ch. 17.
- PS04 outline due Wed, full version due Mon Mar 08.
- Problem session Fri Mar 05, 10am–noon.

Recall: Division with remainder in F[x]

Theorem

Let F be a field, and let a(x) and d(x) be polynomials in F[x] with $d(x) \neq 0$. There exist unique $q(x), r(x) \in F[x]$ such that

$$a(x) = d(x)q(x) + r(x), \quad \text{with } deg(r(x)) < deg(d(x)))$$

Ex. F=Zs

$$a(x) = \chi^{2} + 2\chi + 4$$

$$d(x) = \chi + 2 \qquad q(x) = \chi$$

$$a(x) = \chi + 2 \qquad q(x) = \chi$$

$$a(x) = \chi + 2 \qquad q(x) = 4$$

F[x] is a PID

Definition

A principal ideal domain is an integral domain R in which every ideal has the form $\langle a \rangle = \{ ra \mid r \in R \}$ for some $a \in R$.

Non-example: $\langle x, 2 \rangle$ in **Z**[x] can't be generated by a single element.

all polynomials with even constant term Theorem

If F is a field, then F[x] is a PID.

deg (0) = - 00 deg (nun-0 (unst)= 0 S'pose A is an ideal of F[x]. If A = {0}, then A = <0>, done. So assume A contains nonzero elements Let d(x) be a nonzero element of A with smallest possible degree.

WTS: $A = \langle d(x) \rangle = \{ q(x)d(x) \mid q(x) \text{ in } F[x] \}.$ We know <d(x)> contained in A, so enul to show A contained in <d(x)>.

a (x) E A Lohy dir'. x(x) = q(x) d(x) + r(x)

torsome 1, r & FG (x) - q(x) d((x) EA 50 v(x)=a CALIDEN But dis non-2 elt of Aulmin deg, keg v(x)=0() a(x)=g(x)d(x) for some $\bigcirc a(x) \in \langle d(x) \rangle$ Corollary F a field, I a nonzero ideal of F[x], $g(x) \in I$ Then $I = \langle g(x) \rangle$ exactly when g(x) is a nonzero polynomial of smallest possible degree in I.

Factoring in D[x]

like left D an integral domain. Definition $f(x) \neq 0$, f not a unit. $n \sum x$. • f is reducible over D if f(x) = a(x)b(x) and neither of $a, b \in D[x]$ is a unit. • Otherwise f is **irreducible**, i.e., whenever f(x) = a(x)b(x), then one of $a, b \in D[x]$ is a unit. ≥. X+1 irred over Q.R red over C' 6

 $\chi_{41} = (\chi_{-1})(\chi_{+1})$ x2+1 irred over 23 x2+1=(x+1) ver Zz red. $(Over \mathbb{Z}^{1})^{2} = \chi^{2} + \lambda \times t$ 2x+2 red over 2: (2x+2)=(x+1)[2] 2x2+2 irred over Q(2unitin Q)

Note: By definition, factorization in Z[x] contains factorization in Z as a subcase. So factorization in Z[x] is strictly more complicated than factorization in Q[x].

Fact: Factorization in Z[x] is (more or less)

factorization in Q[x] + factorization in Z

Why do we care about factorization?

Meta-principle: As it goes in Z, so it goes in F[x].

Z/(p) field <=>p prime

~

- **Fact:** $F[x]/\langle p(x) \rangle$ is a field if and only if p(x) is irreducible. (This follows from long division, but we'll prove that later.)
- So to construct interesting examples of fields, we need to be able to test if $p(x) \in F[x]$ is irreducible, especially for $F = \mathbf{Q}$ and $F = \mathbf{Z}_{p}$.
- Turns out that the most common irreducibility techniques are based on factoring f(x) over **Z**. Fortunately, turns out that reducibility over \mathbf{Q} is equivalent to reducibility over \mathbf{Z} (!!).

basially

Degrees 2 and 3

Theorem F a field, $f \in F[x]$, deg f = 2 or 3. Then TFAE: 1. f is reducible. 2. f has a zero in F. ~ FF Proof: (2)=)(1): If (12)= D then (x-x) div f (factor thm). $(1) \Rightarrow (2)$ It $f(x) = g(x)h(x)g_{1}h$ not So deg g, deg h >0, so ove has deg !: $2 = [+1] \cdot 3 = [+2 = 2+1].$ < ロ > < 同 > < 回 > < 回 >

So if g(x) = ax + b $a \neq 0$ g(x)-a(x+b) Ffielt $\int_{0}^{\infty} f(-\frac{1}{2}) = g(-\frac{1}{2})h(-\frac{1}{2})$ = Ő・hF書=つ $\binom{00}{}$

 $E_{F} = Z_{2}^{-\{0,1\}}$ + (0)= 1 firred. FK1=X3+X+1 f(1)=($\frac{E_{x}}{g(x) = \chi^{4} + \chi^{2} + 1} deg 4$ g(x) = 1, g(1) = 1 deg 4 FAIL FAIL $F = \mathbb{Z}_{2}^{\prime}, g(x) = \chi^{4} + \chi^{2} + 1$ $g(1) = 0_{30} (\chi - 1) \operatorname{div} g$

So either F(x)=0 or g(x)=0 inZ(x) =) p div cont(f) or cont(g) (ontra Assymed cont(f)=1=cont(g).

Reducible over **Q** implies reducible over **Z**

Suppose $f \in \mathbf{Z}[x]$. If f reducible over \mathbf{Z} , reducible over \mathbf{Q} a *fortiori*. Conversely:

Theorem If $f \in \mathbf{Z}[x]$ reducible over \mathbf{Q} , reducible over \mathbf{Z} . **Proof:** WLOG f primitive. Suppose f(x) = g(x)h(x), $g, h \in \mathbf{Q}[x]$. Clear denominators of g and h: abf(x) = (ag(x))(bh(x)).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Tests for proving irreducibility over Z

Suppose $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$, p prime.

Theorem (Mod *p* irreducibility test)

Let $\overline{f}(x)$ be f(x) with coefficients reduced (mod p). If $\overline{f}(x)$ is irreducible over Z_p , then f(x) is irreducible over Z (and therefore, over Q).

Theorem (Eisenstein criterion)

If p divides a_{n-1}, \ldots, a_0 , p doesn't divide a_n , and p^2 doesn't divide a_0 , then f irreducible over **Z** (and therefore, over **Q**).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Examples

<ロト < 個 ト < 臣 ト < 臣 ト 三 の < @</p>

Proofs of irreducibility tests

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

The pth cyclotomic polynomial is irreducible

Define *p*th cyclotomic polynomial to be:

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + \dots + x + 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem $\Phi_p(x)$ is irreducible over **Q**. **Proof:** Consider $f(x) = \Phi_p(x+1) =$