
Math 128B, Mon Feb 08

I Use a laptop or desktop with a large screen so you can read
these words clearly.

I In general, please turn off your camera and mute yourself.

I Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

I Please always have the chat window open to ask questions.

I Reading for today and Wed: Ch. 14.

I PS01 due tonight

I PS02 outline due Wed, full version due Mon Feb 15.

I Next problem session Fri Feb 12, 10:00–noon on Zoom.

I Exam 1 in 2 weeks from today.



The characteristic of a ring

R a ring. If n > 0, nx = x + · · ·+ x (n times).

Definition
Characteristic of R is smallest positive integer n such that nx = 0
for all x ∈ R. If no such n, characteristic 0.

Theorem
Suppose R has multiplicative identity 1.
If additive order of 1 is n <∞, characteristic n; if additive order of
1 is ∞, characteristic 0.



An integral domain has characteristic 0 or p

Contrapositive:

Theorem
If R is a commutative ring with unity and characteristic n = ab
(1 < a, b < n), then R has zero-divisors.

Proof:



Classes of rings we have seen so far

Commutative rings. Rings with unity. Integral domains and fields.





Review: What are the main problems of group theory?

I Structure: Understand subgroups and cosets.

I Homomorphisms and factor groups: Understand
homomorphisms, factor groups (i.e., normal subgroups), and
relationship between them (1IT).

I Classification: Find a list of all possible groups of a given
order (or: all abelian groups of a given order).



What are the main problems of ring theory?

Main problems of ring theory:

I Structure: Understand subrings.

I Homomorphisms and factor groups: Understand
homomorphisms, factor rings (i.e., ideals), and relationship
between them (1IT).

I Number theory: Motivated by number theory:
I Factorization: When do elements of a ring factor uniquely

into “primes”?
(Leads to solutions of integer equations.)

I Field extensions: If we start with (say) Q, what is the
structure of the smallest field containing some particular
algebraic number(s) (e.g.,

√
2, 3
√
−5)?

(Leads to solutions of polynomial equations.)



Ideals

Definition
Let A be a subring of a ring R. To say that A is an ideal of R
means that:

for every r ∈ R, and not just every r ∈ A

and every a ∈ A, both ra and ar are in A.

That is, A is closed not just under multiplication by elements of A
(as is any subring), A is closed under multiplication by elements of
the bigger ring R. (So when we talk about ideals, we have to be
clear what the bigger ring R is.)



Ideal test
Recall that a nonempty A ⊆ R is a subring of R if and only if A is
closed under subtraction and multiplication. Combining this with
the definition of ideal:

Theorem
Let A 6= ∅ be a subset of a ring R. Then A is an ideal of R if and
only if the following conditions all hold:

I (Closed under subtraction) For all a, b ∈ A, we have
a− b ∈ A.

I (Closed under R-multiplication) For all a ∈ A and r ∈ R, we
have that ra ∈ A and ar ∈ A.

A/C:



Examples

I For any fixed n ∈ Z, we have the ideal

nZ = {kn | k ∈ Z}

of R = Z.

I For R = Z[x ], the set

A = {f (x) | f (0) ∈ 2Z}

(i.e., polynomials with even constant term) is an ideal of Z[x ].



Finitely generated ideals
Even more generally:

Theorem
Let R be a commutative ring, and let a be a fixed element of R.
Then

〈a〉 = {ra | r ∈ R}

is an ideal of R, called the principal ideal generated by a.

Even more generally,

〈a1, . . . , ak〉 = {r1a1 + · · ·+ rkak | ri ∈ R}

is an ideal of R, called the ideal generated by a1, . . . , ak .
Proof that 〈a〉 is an ideal:





Examples and non-examples

I Let R = C and let A = R. Then A is a subring of R, but A is
not an ideal of R because:

I Let R = R[x ] and

A = {f (x) | f (0) = 0} .

Then A = 〈x〉, which means that A is a principal ideal (i.e.,
generated by a single element). It is true but very much not
obvious that every ideal of R = R[x ] is principal.

I Let R = Z[x ], and let

A = {f (x) | f (0) ∈ 2Z} ,

(again, all polynomials with even constant term). Then
A = 〈2, x〉, but A is not principal (again, true but very much
not obvious).



Factor rings

Given an ideal A of a ring R, we can define the factor ring R/A as
follows.

I Set: We define R/A to be the set of (additive) cosets of A in
R, i.e.,

R/A = {r + A | r ∈ R} .

I Operations: For r , s ∈ R, we define

(r + A) + (s + A) = (r + s) + A

(r + A)(s + A) = (rs) + A.

As with groups, we might worry that these operations are not
well-defined. However:

Theorem
The above operations are well-defined, and give R/A the structure
of a ring.



Proof that factor rings are well-defined

As with groups, the hard part is to prove that the operations are
well-defined.

(r + A) + (s + A) = (r + s) + A

(r + A)(s + A) = (rs) + A



An example that turns out to be familiar

Example: R = Z, A = 3Z. Then R/A = Z/3Z has:

I Elements:

I Addition:

I Multiplication:



Another example that turns out to be familiar

Example: R = R[x ], A =
〈
x2 + 1

〉
. R/A = R[x ]/

〈
x2 + 1

〉
has:

I Elements:

I Addition:

I Multiplication:

In general: For a ∈ R, R/ 〈a〉 is “R after setting a = 0”.


