Welcome to Math 128B

- Use a laptop or desktop with a large screen so you can read these words clearly.
- In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- Reading for today: Ch. 12. Reading for Mon: Ch. 13.
- PS00 due Mon Feb 01.
- PS01 outline due Wed Feb 03, full version due Mon Feb 08.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problem session Fri Jan 29, 10:00–noon on Zoom.

Tour of the course website

The course website is:

http://www.timhsu.net/courses/128b/

Breakout room activity 1

In a minute, I'll send everyone into breakout rooms in groups of 3–4 to answer the following question:

What is a notable fact about yourself?

(If nothing comes to mind, make something up!)

In each breakout room:

- Share your notable facts with each other.
- Learn each others' names.

Get ready to turn on your cameras and mics. (I'll pause the recording.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Breakout room activity 2

Next, in breakout rooms, you'll answer the following question:

What is one important event in your mathematical life?

In each breakout room:

- Learn someone else's name and important event. (I'll visit each room to help you organize cyclically.)
- Be ready to share that person's important event when we get back to the main room. (Take notes!)

Get ready to turn on your cameras and mics again.

Some things you'll need to know from 128A

- Fundamentals of groups
- Subgroups and cosets
- Normal subgroups and factor groups
- Homomorphisms
- ► Examples: $\mathbf{Z}_n D_n$, S_n , A_n , $G \oplus H$, finite abelian groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Rings

A **ring** is a set *R* with binary operations + and \cdot (multiplication) such that:

(Abelian group, 4 axioms) The operation + gives R the structure of an abelian group, with (additive) identity 0 and the inverse of a written -a. So for $a, b, c \in R$: Assoc: (a tp)+ C=a+(btc) Identity: O+a=a=a+O Invers: a+(-a)= 0=(-a)+a Comm: a+b=b+a (Associativity of multiplication) For all $a, b, c \in R$, (ab)c = a(bc). (Distributive) For all $a, b, c \in R$, a(b + c) = ab + ac and (a+b)c = ac + bc.

(Rings with unity) If there exists 1 ∈ R such that 1a = a1 = a for all a ∈ R and 1 ≠ 0, we say that 1 is a unity (or multiplicative identity) in R. (Commutative rings) If ab = ba for all a, b ∈ R, we say that R is

(Commutative rings) If ab = ba for all $a, b \in R$, we say that R is **commutative**.

Examples

► Z, Q, C, R

Ideals

F(X), the real-valued functions on X

► **Z**[i]

► H

► **Z**_n

► *M*(*n*, **R**)

Operator algebras....

Rings that are sets of numbers

Real-valued functions

Definition

Suppose X is any set. We define F(X), the ring of real-valued functions on X, to be:

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

- **Set:** Functions $f : X \to \mathbf{R}$.
- Addition: To add f(x) and g(x):

• **Multiplication:** To multiply f(x) and g(x):

Noncommutative rings

"The" example of a noncommutative ring is $M(n, \mathbf{R})$:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- **Set:** $n \times n$ matrices with entries in **R**.
- **Addition:** Matrix addition.
- Multiplication: Matrix multiplication.

Units

Let R be a ring with unity 1.

Definition

To say that $a \in R$ is a **unit of** R means that a is invertible in R, i.e., there exists some $b \in R$ such that ab = 1 = ba.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Examples: Units of Z are:

Units of **R** are:

Divisibility

Let R be a commutative ring.

Definition

For $a, b \in R$, to say that a **divides** b in R, or that a is a **factor** of b in R, means that b = aq for some $q \in R$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example: What are the factors of 6 in **Z**?

Example: What are the factors of 6 in R?

Facts that are true inside any ring

Theorem

$$R \text{ a ring, } a, b, c \in R.$$
 Then:
 $\bullet a0 = 0a = 0.$
 $\bullet a(-b) = (-a)b = -ab.$
 $\bullet (-a)(-b) = ab.$
 $\bullet a(b-c) = ab - ac \text{ and } (b-c)a = ba - ca.$
And if $1 \in R$ is a unity element,
 $\bullet (-1)a = -a.$
 $\bullet (-1)(-1) = 1.$

Proof of (-a)(-b) = ab, given previous two identities:

Subrings

Definition

 $S \subseteq R$ is a subring of R if S is a ring under the operations of R. Subring test:

Theorem

Suppose $S \subseteq R$ and $S \neq \emptyset$. Then S is a subring of R if and only if

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► S closed under subtraction, i.e.,

S closed under multiplication, i.e.,

Examples of subrings

Z, **Q**, **C**, **R**, **Z**[*i*]:

$$\left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \middle| a, b \in \mathbf{R} \right\} \text{ in } M(2, \mathbf{R})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Review: What are the main problems of group theory?

- **Structure:** Understand subgroups and cosets.
- Homomorphisms and factor groups: Understand homomorphisms, factor groups (i.e., normal subgroups), and relationship between them (1IT).
- Classification: Find a list of all possible groups of a given order (or: all abelian groups of a given order).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

What are the main problems of ring theory?

Main problems of ring theory:

- **Structure:** Understand subrings.
- Homomorphisms and factor groups: Understand homomorphisms, factor rings (i.e., ideals), and relationship between them (1IT).
- **Number theory:** Motivated by number theory:
 - Factorization: When do elements of a ring factor uniquely into "primes"?
 - ► Field extensions: If we start with (say) Q and add in some algebraic numbers (e.g., √2, ³√-5), what is the structure of the resulting ring?