Sample Exam 1 Math 128A, Fall 2020

Note that this exam began with a "recite the definition" problem, which is a type of problem that your exam will not have.

1. (10 points) Let G be a group, and let a be an element of G. Define $\langle a \rangle$, the cyclic subgroup generated by a.

2. (12 points) Recall that in the group D_5 , R_d is a counterclockwise rotation of d degrees, and for $1 \le i \le 5$, F_i is the reflection across the line shown below.

Compute F_1R_{144} . Show all your work; in particular, show the results of any intermediate steps.

For questions 3–5, you are given a statement. If the statement is true, you need only write "True", though a justification may earn you partial credit if the correct answer is "False". If the statement is false, write "False", and justify your answer **as specifically as possible**. (Do not just write "T" or "F", as you may not receive any credit; write out the entire word "True" or "False".)

3. (12 points) Let G be a group, and let a and b be elements of G. It must be the case that ab = ba.

4. (12 points) Let H be a nonempty subset of \mathbf{Z} that is closed under addition. Then it is possible that H is *not* a subgroup of G.

5. (12 points) Let G be a group, and let a be an element of G such that $a^{12} = e$. Then it must be the case that the order of a is 12.

6. (13 points) **PROOF QUESTION.** Let *a* and *b* be positive integers, and suppose *k* is an integer such that gcd(a, b) divides *k*. Prove that there exist $x, y \in \mathbb{Z}$ such that ax + by = k.

7. (13 points) **PROOF QUESTION.** Let G be a group, and suppose $a, t \in G$ are such that $t^{-1}at = a^{-1}$.

- (a) Prove that $t^{-1}a^{-1}t = a$.
- (b) Prove that $t^{-2}at^2 = a$.

Note: For part (b), you may use the result of part (a) even if you are not able to prove part (a).

8. (16 points) **PROOF QUESTION.** Let *H* be the subset of all $A \in GL(2, \mathbb{R})$ such that det *A* is a nonzero rational number. In other words, let

$$H = \{A \in GL(2, \mathbf{R}) \mid \det A \in \mathbf{Q}^*\}.$$

Prove that H is a subgroup of $GL(2, \mathbb{R})$. (Note: You may freely use what you know about rational numbers from previous math classes, including K-12 classes.)