Math 128A, problem set 09 Outline due: Mon Nov 09 Due: Mon Nov 16 Last revision due: Mon Dec 14

Problems to be done, but not turned in: (Ch. 10) 1–65 odd. Fun: (Ch. 10) 42.

Problems to be turned in:

1. Note that if $r = R_{20}$ and f is any reflection in D_{18} , we know that $r^n = f^2 = e$ and $frf^{-1} = r^{-1}$, and that

$$D_{18} = \left\{ r^i, r^i f \mid 0 \le i < 18 \right\}.$$

(See PS08 for the case of D_{12} instead of D_{18} ; D_{18} works the same.)

Let $H = \langle r^9 \rangle = \{e, r^9\}$, and let $K = \{r^{2i}, r^{2i}f \mid 0 \le i < 9\}$. You may assume that H and K are subgroups of D_{18} .

- (a) Prove that H and K are normal in D_{18} .
- (b) Prove that $D_{18} \approx H \oplus K$.

(While you do not need to prove this, it is a fact that $H \approx Z_2$ and $K \approx D_9$, which means that $D_{18} \approx Z_2 \oplus D_9$.)

- 2. Suppose we define a function $\varphi : \mathbf{Z}_7 \to \mathbf{Z}_{20}$ by the formula $\varphi(x) = 2x$, i.e., $\varphi(0) = 0$, $\varphi(1) = 2$, $\varphi(2) = 4$, $\varphi(3) = 6$, $\varphi(4) = 8$, $\varphi(5) = 10$, $\varphi(6) = 12$. Is φ a homomorphism? Prove or disprove.
- 3. (Ch. 10) 16.
- 4. (Ch. 10) 24.
- 5. (Ch. 10) 30.
- 6. Suppose $\varphi: G \to \overline{G}$ is a homomorphism with $|\ker \varphi| = 105$, and suppose $a \in G$ has order 126. List all possibilities for the order of $\varphi(a)$, and prove your answer.
- 7. Suppose G is a group, $H \triangleleft G$, $K \triangleleft G$, G = HK, and $H \cap K = \{e\}$.
 - (a) Prove that for $h \in H$ and $k \in K$, $hkh^{-1}k^{-1} \in H \cap K$.
 - (b) Prove that if $h_1k_1 = h_2k_2$ for $h_1, h_2 \in H$ and $k_1, k_2 \in K$, then $h_1 = h_2$ and $k_1 = k_2$. (In other words, every element of G can be expressed in the form hk with $h \in H$ and $k \in K$ in exactly one way.)
 - (c) Now define a map $\varphi: G \to H \oplus K$ by the formula

$$\varphi(hk) = (h, k)$$
 for $h \in H, k \in K$.

Prove that φ is a homomorphism.

(d) Calculate ker φ (with proof). What can you conclude from the First Isomorphism Theorem?