Math 128A, problem set 04 CORRECTED Fri Sep 25 Outline due: Wed Sep 23 Due: Mon Sep 28 Last revision due: Wed Oct 21

Problems to be done, but not turned in: (Ch. 4) 17–75 odd; (Ch. 5) 1–19 odd. **Fun:** (Ch. 4) 50, 64, 77.

Problems to be turned in:

- 1. Justify all answers.
 - (a) List all generators of the subgroup $\langle 5 \rangle$ of **Z**.
 - (b) Let $G = \langle a \rangle$ be an infinite cyclic group. List all generators of the subgroup $\langle a^5 \rangle$ of G. (corrected)
 - (c) \mathbf{Z}_{60} has a subgroup *H* of order 20. List all generators of that subgroup *H*.
 - (d) Let $G = \langle a \rangle$ be a cyclic subgroup of order 60, and let H be a subgroup of G of order 20. List all generators of that subgroup H.
- 2. Find the subgroup lattices for \mathbf{Z}_5 , \mathbf{Z}_{10} , \mathbf{Z}_{70} , and \mathbf{Z}_{770} . Generalize as much as you can.
- 3. (Ch. 4) 42. Prove your answer.
- 4. (Ch. 4) 68. Prove your answer.
- 5. (a) Let G be an abelian group of order 119 such that $x^{119} = e$ for all $x \in G$. Prove that G is cyclic.
 - (b) Let G be an abelian group of order 49 such that $x^{49} = e$ for all $x \in G$, and suppose that G is *not* cyclic. What can you say about G?
- 6. Let $\alpha = (1 \ 7 \ 4)(2 \ 5 \ 3 \ 9 \ 10 \ 8 \ 6 \ 12)$ and $\beta = (1 \ 2 \ 9 \ 3 \ 10 \ 5)(6 \ 8)(7 \ 12 \ 11)$ be elements of S_{12} .
 - (a) Compute $\alpha\beta$, in cycle form.
 - (b) Find the orders of α , β , and $\alpha\beta$.
- 7. The cycle shape of $\alpha \in S_n$ is the set (or actually, multiset) of the lengths of the cycles obtained when α is expressed as a product of disjoint cycles (see pp. 102–103).
 - (a) Find all possible cycle shapes of elements of S_8 , and find the orders of the elements with those cycle shapes.
 - (b) Find all possible cycle shapes of elements of A_8 .