Math 128A, Mon Oct 26
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Use a laptop or desktop with a large screen so you can read
these words clearly.

In general, please turn off your camera and mute yourself.

Exception: When we do groupwork, please turn both your
camera and mic on. (Groupwork will not be recorded.)

Please always have the chat window open to ask questions.
Reading for today: Ch. 9. Reading for Wed: Ch. 10.
PS07 outline due today, full version due Wed.

Problem session, Fri Oct 30, 10:00—noon on Zoom.



Normal subgroups, normal subgroup test

left and right cosets are the same
Definition c—
To say that H < G is normal in G means that aH = Ha for all
a € G, in which case we write H <1 G.

Theorem ( 0/ g’r)
Suppose H < G. TFAE:
1. H1 G.
2. Forall x € G, x 'Hx C H.
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In other words, H is normal exactly when we can move any x in G past
any h in H, at the cost of possibly changing h to some other element h' of
H.



Factor groups

Definition
For H <1 G, the factor group, or quotient group, G/H is:

> Set: All (left) cosets aH. (Same as right cosets Ha because
aH = Ha.)

> . . a is called a representative of the
Operation: We define /‘ coset aH, and b reps bH.

&
(aH)(bH) = (ab)H.

Note that this is the multiplication of cosets that you get when you
multiply individual elements — assuming that coset times coset is
coset. l.e., defn of the operation looks like it might
depend on which representative we choose

Theorem for each coset; we need to show that it
G/H really is a group. doesn't.

Proof: Hard part is showing that operation is well-defined; i.e., if
aH = a'H and bH = b'H, is (a'b')H = (ab)H?
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Remains to check associativity, identity, inverse
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Center of G Consequencesl!!!

Z(G) is the set of elements in G that commute with everything in G.

Recall Z(G) ={z € G | zx = xz for all x € G}.

Note that Z(G
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G/Z theorem
khcw 2 <) (S_
Theorem {

G a group, Z = Z(G) center of G. If G/Z is cyclic, then G is
abelian.

Proof: Suppose G/Z is cyclic. Then G/Z is generated by some

cosetaZ|e6_/Z {_2 ,.Z a>'z N f}
@z =< 27| hez} a2

B/c cosets partition G, for any x, y in G, each of x and y is contained in some
coseta®n Z. So:

x=q"z, Y= iz, ,2,6L
The,
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Since x and y are arbitrary elements of G, G must be abelian.
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Cauchy’s Theorem for abelian groups

Theorem

Let G be an abelian group such that p divides |G|. Then G
contains an element of order p.

Proof: Induction (strong) on n = |G|. If |G| = p, G cyclic, done.
Now suppose theorem holds whenver |G| < n. Take a nontrivial
element of G; by taking a suitable power of that nontrivial

element, get some x € G such that ord(x) = q is prime_If g = p,
done; otherwise, let N = (x) and consider G/N. Note that\

|G/N| = |G| /|N| = n/q s still divisible by p, in that case. { ip
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Internal direct products

Definition
To say that G is the internal direct product of H and K means:
» H< G and K < G;

» G = HK; and
» HN K = {e}.
Theorem

If G is the internal direct product of H and K, then G ~ H® K.

Proof to come in Ch. 10; right now, application.



Groups of order p?

Theorem

Suppose |G| = p?, where p is prime. Then either G ~ Z, or
GrZ,dZp,.

Proof: Suppose G not cyclic. Then every a # e in G has order

Claim: Every cyclic subgroup (a) of G is normal.
ABC: b € G such that bab™! ¢ (a). Then if H= (bab™'), b
must be in one of the cosets

H, aH, a’H,..., a"P"'H.
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To be proven in Ch. 10

Recall that Inn(G) is the group of all automorphisms of G of the

form

va(x) = axa !,

the group of inner automorphisms of G. Then

Theorem
G/Z(G) = Inn(G).
Again, proof in Ch. 10.



