Math 128A, Mon Oct 26

- Use a laptop or desktop with a large screen so you can read these words clearly.
- ▶ In general, please turn off your camera and mute yourself.
- Exception: When we do groupwork, please turn both your camera and mic on. (Groupwork will not be recorded.)
- Please always have the chat window open to ask questions.
- ▶ Reading for today: Ch. 9. Reading for Wed: Ch. 10.
- ▶ PS07 outline due today, full version due Wed.
- ▶ Problem session, Fri Oct 30, 10:00–noon on Zoom.

Normal subgroups, normal subgroup test

left and right cosets are the same

Definition

To say that $H \leq G$ is **normal** in G means that aH = Ha for all $a \in G$, in which case we write $H \triangleleft G$.

Theorem $(N \leq T)$ Suppose $H \leq G$. TFAE:

- 1. $H \triangleleft G$.
- 2. For all $x \in G$, $x^{-1}Hx \subseteq H$.

In other words, H is normal exactly when we can move any x in G past any h in H, at the cost of possibly changing h to some other element h' of H.

Factor groups

Definition

For $H \triangleleft G$, the **factor group**, or **quotient group**, G/H is:

- **Set:** All (left) cosets aH. (Same as right cosets Ha because aH = Ha.)
- ▶ **Operation:** We define

a is called a representative of the coset aH, and b reps bH.

$$(aH)(bH) = (ab)H.$$

Note that this is the multiplication of cosets that you get when you multiply individual elements — assuming that coset times coset is coset.

I.e., defn of the operation looks like it might

Theorem

G/H really is a group.

depend on which representative we choose for each coset; we need to show that it doesn't.

Proof: Hard part is showing that operation is well-defined; i.e., if aH = a'H and bH = b'H, is (a'b')H = (ab)H?

Recall that TFAE: ((4,7 So if aH=a'H $\triangleright xH = yH$ 164=15H v ∈ xH ▶ y = xh for some $h \in H$. nen a'=ah, (h, h) This step takes more work, see Ch. 7. = abh,h, Let h=h,h, So a'b'=abh for some heH sa'b'H=abH b'cHclo

Remains to check associativity, identity, inverse:

"Gmod H" Example {e, Ro, Rizo, ..., Rz, > 1. $G = D_6$, $H = \langle R_{60} \rangle$. Then $G/H \approx \mathbb{Z}_{2}$ 161=12 nee, Rigor 2. $G = D_6$, $H = \langle R_{180} \rangle$. Then G/H **≈ >** (G/H)=6

Z6 or D3?

					+	1				FIA	-1		
_		e	R ₆₀	R ₁₂₀	R ₁₈₀	R ₂₄₀	R ₃₀₀	F_1	F_2	<i>F</i> ₃	F ₁₂	F ₂₃	F ₃₄
	е	е	R ₆₀	R ₁₂₀	R ₁₈₀	R ₂₄₀	R ₃₀₀	F_1	F ₂	<i>F</i> ₃	F ₁₂	F ₂₃	F ₃₄
,	R ₆₀	R ₆₀	R ₁₂₀	(P ₁₈₀	F 40	R ₃₀₀	e	F ₁₂	Ę.,	- 534	F_2	F ₃	F_1
+	R_{120}	R ₁₂₀	R ₁₈₀	240	100	е	R ₆₀	<i>F</i> ₂	4	$\bar{r_1}$	F ₂₃	F ₃₄	F ₁₂
	R ₁₈₀	R ₁₈₀	R ₂₄₀	/ ² 300	٤	R ₆₀	R ₁₂₀	F ₂₃	F ₁ , ₄	F ₁₂	<i>F</i> ₃	F_1	<i>F</i> ₂
	R ₂₄₀	R ₂₄₀	R ₃₀₀	e	R ₆₀	R ₁₂₀	R ₁₈₀	<i>F</i> ₃	F_1	F_2	F ₃₄	F ₁₂	F ₂₃
	R ₃₀₀	R ₃₀₀	е	R ₆₀	R ₁₂₀	R ₁₈₀	R ₂₄₀	F ₃₄	F ₁₂	F ₂₃	F_1	F_2	<i>F</i> ₃
	F_1	F_1	F ₃₄	F ₃	F ₂₃	F ₂	F ₁₂	e	R ₂₄₀	R ₁₂₀	R ₃₀₀	R ₁₈₀	R ₆₀
	F_2	<i>F</i> ₂	F_{12}	F.	E ₃₄	F 3	F ₂₃	R ₁₂₀	e	R_{240}	R_{10}	R ₃₀₀	R ₁₈₀
	<i>F</i> ₃	<i>F</i> ₃	F.	E	<i>F</i> ₁₃		F ₃₄	R ₂₄₀	R ₁₂₀	e	<i>R</i> 30	R ₆₀	R ₃₀₀
Ę۱	↓ F ₁₂	F ₁₂	F ₃	F ₃₄	F ₃	/i ₁₃	<i>F</i> ₂	R ₆₀	R ₃₀₀	? ₁₈₀	<u> </u>	R ₂₄₀	R ₁₂₀
	F ₂₃	F ₂₃	F_2	F_{12}	F_1	F ₃₄	<i>F</i> ₃	R ₁₈₀	R ₆₀	R ₃₀₀	R_{120}	e	R ₂₄₀
	F ₃₄	F ₃₄	F_3	F ₂₃	F_2	F ₁₂	F_1	R ₃₀₀	R ₁₈₀	R ₆₀	R ₂₄₀	R ₁₂₀	e

		, ()		K .		b .				.	. 4	
_		e	R ₁₈₀	F_2	F ₃₄	R ₆₀	R ₂₄₀	F_1	F ₂₃	R ₁₂₀	R ₃₀₀	<i>F</i> ₃	<i>F</i> ₁₂
e	e	e	R ₁₈₀	<i>F</i> ₂	F ₃₄	R ₆₀	R ₂₄₀	F_1	F ₂₃	R ₁₂₀	R ₃₀₀	<i>F</i> ₃	F ₁₂
	R ₁₈₀	R ₁₈₀	e	F ₃₄	F_2	R ₂₄₀	R ₆₀	F ₂₃	F_1	R ₃₀₀	R ₁₂₀	F ₁₂	<i>F</i> ₃
a	F_2	F ₂	F ₃₄	e	R ₁₈₀	F ₁₂	CF ₃	R ₁₂₀	R ₃₀₀	F_1	F ₂₃	R ₂₄₀	R ₆₀
	F ₃₄	F ₃₄	F ₂	R ₁₈₀	e	F ₃	<i>F</i> ₁₂	R ₃₀₀	R ₁₂₀	F ₂₃	F_1	R ₆₀	R ₂₄₀
b	R ₆₀	R ₆₀	R ₂₄₀	F ₂₃	$rac{1}{2}$	R ₁₂₀	R ₃₀₀	F ₁₂	F ₃	R ₁₈₀	e	F ₃₄	F ₂
	R ₂₄₀	R ₂₄₀	R ₆₀	F_1	23	R ₃₀₀	R ₁₂₀	<i>F</i> ₃	<i>F</i> ₁₂	e	R ₁₈₀	<i>F</i> ₂	F ₃₄
	F_1	F_1	F ₂₃	R ₂₄₀	R ₆₀	F ₃₄	F ₂	e	5 180	<i>F</i> ₃	<i>F</i> ₁₂	R ₁₂₀	R ₃₀₀
(F ₂₃	F ₂₃	F_1	R ₆₀	R ₂₄₀	<i>F</i> ₂	F ₃₄	R ₁₈₀	e	F ₁₂	<i>F</i> ₃	R ₃₀₀	R ₁₂₀
۔ ل	R ₁₂₀	R ₁₂₀	R ₃₀₀	<i>F</i> ₃	F ₁₂	R ₁₈₀	e	F_2	F ₃₄	R ₂₄₀	R ₆₀	<i>F</i> ₁	F ₂₃
	R ₃₀₀	R ₃₀₀	R ₁₂₀	F ₁₂	<i>F</i> ₃	e	R ₁₈₀	F ₃₄	F ₂	R ₆₀	R ₂₄₀	F ₂₃	F_1
4	<i>F</i> ₃	<i>F</i> ₃	F ₁₂	R ₁₂₀	R ₃₀₀	F ₂₃	F ₁	R ₂₄₀	R ₆₀	F_2	F ₃₄	e	R ₁₈₀
'	<i>F</i> ₁₂	F ₁₂	<i>F</i> ₃	R ₃₀₀	R ₁₂₀	<i>F</i> ₁	F ₂₃	R ₆₀	R ₂₄₀	F ₃₄	F ₂	R ₁₈₀	e

Z(G) is the set of elements in G that commute with everything in G.

Recall
$$Z(G) = \{z \in G \mid zx = xz \text{ for all } x \in G\}.$$

Note that $Z(G) \triangleleft G$:

$$A \times \epsilon G, h \in Z(G)$$

G/Z theorem

Theorem

K thiw 206

G a group, Z = Z(G) center of G. If G/Z is cyclic, then G is abelian.

Proof: Suppose G/Z is cyclic. Then G/Z is generated by some coset aZ, i.e.:

coset aZ, i.e.:

$$G/Z = \{Z, aZ, a^2Z, ...\}$$

 $(qZ)^n = q^nZ = \{a^nZ | n \in Z\} = \{aZ\}$

B/c cosets partition G, for any x, y in G, each of x and y is contained in some coset a^n Z. So:

$$x=a^{n}z_{1}$$
 $y=a^{h}z_{2}$ $z_{1,z_{1}}\in \mathbb{Z}$
Then

Since x and y are arbitrary elements of G, G must be abelian.

Cauchy's Theorem for abelian groups

Theorem

Let G be an abelian group such that p divides |G|. Then G contains an element of order p.

Proof: Induction (strong) on n = |G|. If |G| = p, G cyclic, done. Now suppose theorem holds whenver |G| < n. Take a nontrivial element of G; by taking a suitable power of that nontrivial element, get some $x \in G$ such that ord(x) = q is prime. If q = p, done; otherwise, let $N = \langle x \rangle$ and consider G/N. Note that |G/N| = |G|/|N| = n/q is still divisible by p, in that case. $1 \neq 0$ By ind, I aNEG/N st. ord GN)=p. 56 (GN) = N. => 1 N=N

=> areN.THERE STARTHERE NEXT But a'N, a'N, .., a''N = N, so ord(a) can't be r.p. to p. so p divs ortal, i.e. orda=pk torsime k. Then ord(ak)=p.

Internal direct products

Definition

To say that G is the **internal direct product** of H and K means:

- ▶ $H \triangleleft G$ and $K \triangleleft G$;
- \triangleright G = HK; and
- ▶ $H \cap K = \{e\}$.

Theorem

If G is the internal direct product of H and K, then $G \approx H \oplus K$.

Proof to come in Ch. 10; right now, application.

Groups of order p^2

Theorem

Suppose $|G| = p^2$, where p is prime. Then either $G \approx \mathbf{Z}_{p^2}$ or $G \approx \mathbf{Z}_p \oplus \mathbf{Z}_p$.

Proof: Suppose G not cyclic. Then every $a \neq e$ in G has order

Claim: Every cyclic subgroup $\langle a \rangle$ of G is normal.

ABC: $b \in G$ such that $bab^{-1} \notin \langle a \rangle$. Then if $H = \langle bab^{-1} \rangle$, b must be in one of the cosets

 $H, aH, a^2H, ..., a^{p-1}H.$

To be proven in Ch. 10

Recall that Inn(G) is the group of all automorphisms of G of the form

$$\varphi_{\mathsf{a}}(\mathsf{x}) = \mathsf{a}\mathsf{x}\mathsf{a}^{-1},$$

the group of inner automorphisms of G. Then

Theorem

$$G/Z(G) \approx \operatorname{Inn}(G)$$
.

Again, proof in Ch. 10.